ترغب بنشر مسار تعليمي؟ اضغط هنا

First detection of [N II] 205 micrometer absorption in interstellar gas

435   0   0.0 ( 0 )
 نشر من قبل Carina Persson M
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0.1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N^+)approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines, if approx7-10 % of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [NII] 205 micrometer absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 micrometer line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM.



قيم البحث

اقرأ أيضاً

We present the first detection of gas phase S2H in the Horsehead, a moderately UV-irradiated nebula. This confirms the presence of doubly sulfuretted species in the interstellar medium and opens a new challenge for sulfur chemistry. The observed S2H abundance is ~5x10$^{-11}$, only a factor 4-6 lower than that of the widespread H2S molecule. H2S and S2H are efficiently formed on the UV-irradiated icy grain mantles. We performed ice irradiation experiments to determine the H2S and S2H photodesorption yields. The obtained values are ~1.2x10$^{-3}$ and <1x10$^{-5}$ molecules per incident photon for H2S and S2H, respectively. Our upper limit to the S2H photodesorption yield suggests that photo-desorption is not a competitive mechanism to release the S2H molecules to the gas phase. Other desorption mechanisms such as chemical desorption, cosmic-ray desorption and grain shattering can increase the gaseous S2H abundance to some extent. Alternatively, S2H can be formed via gas phase reactions involving gaseous H2S and the abundant ions S+ and SH+. The detection of S2H in this nebula could be therefore the result of the coexistence of an active grain surface chemistry and gaseous photo-chemistry.
In recent years, a plethora of high spectral resolution observations of sub-mm and FIR transitions of methylidene (CH), have demonstrated this radical to be a valuable proxy for H2, that can be used for characterising molecular gas within the interst ellar medium (ISM) on a Galactic scale, including the CO-dark component. Here we report the discovery of the 13CH isotopologue in the ISM using the upGREAT receiver on board SOFIA. We have detected the three hyperfine structure components of the 2THz frequency transition from its ground-state toward four high-mass star-forming regions and determine 13CH column densities. The ubiquity of molecules containing carbon in the ISM has turned the determination of the ratio between the abundances of carbons two stable isotopes, 12C/13C, into a cornerstone for Galactic chemical evolution studies. Whilst displaying a rising gradient with Galactocentric distance, this ratio, when measured using observations of different molecules (CO, H2CO, and others) shows systematic variations depending on the tracer used. These observed inconsistencies may arise from optical depth effects, chemical fractionation or isotope-selective photo-dissociation. Formed from C+ either via UV-driven or turbulence-driven chemistry, CH reflects the fractionation of C+, and does not show any significant fractionation effects unlike other molecules previously used to determine the 12C/13C isotopic ratio which make it an ideal tracer for the 12C/13C ratio throughout the Galaxy. Therefore, by comparing the derived column densities of 13CH with previously obtained SOFIA data of the corresponding transitions of the main isotopologue 12CH, we derive 12C/13C isotopic ratios toward Sgr B2(M), G34.26+0.15, W49(N) and W51E. Adding our values derived from 12/13CH to previous calculations of the Galactic isotopic gradient we derive a revised value of 12C/13C = 5.85(0.50)R_GC + 15.03(3.40).
The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long-suspected to be carriers of the ubiquitous unidentified infrared emission bands remain unclear. To investig ate whether the formation of mono- and poly-cyclic molecules observed in cold cores could form via the bottom-up reaction of ubiquitous carbon-chain species with, e.g. atomic hydrogen, a search is made for possible intermediates in data taken as part of the GOTHAM (GBT Observations of TMC-1 Hunting for Aromatic Molecules) project. Markov-Chain Monte Carlo (MCMC) Source Models were run to obtain column densities and excitation temperatures. Astrochemical models were run to examine possible formation routes, including a novel grain-surface pathway involving the hydrogenation of C$_6$N and HC$_6$N, as well as purely gas-phase reactions between C$_3$N and both propyne (CH$_3$CCH) and allene (CH$_2$CCH$_2$), as well as via the reaction CN + H$_2$CCCHCCH. We report the first detection of cyanoacetyleneallene (H$_2$CCCHC$_3$N) in space toward the TMC-1 cold cloud using the Robert C. Byrd 100 m Green Bank Telescope (GBT). Cyanoacetyleneallene may represent an intermediate between less-saturated carbon-chains, such as the cyanopolyynes, that are characteristic of cold cores and the more recently-discovered cyclic species like cyanocyclopentadiene. Results from our models show that the gas-phase allene-based formation route in particular produces abundances of H$_2$CCCHC$_3$N that match the column density of $2times10^{11}$ cm$^{-2}$ obtained from the MCMC Source Model, and that the grain-surface route yields large abundances on ices that could potentially be important as precursors for cyclic molecules.
We present, for the first time, a statistical study of [N II] 205 mciron line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. Fo r our sample of galaxies, we investigate the correlation between the [N II] luminosity (LNII) and the total infrared luminosity (LIR), as well as the dependence of LNII/LIR ratio on LIR, far infrared colors (IRAS $f_{60}/f_{100}$) and the [O III] 88 micron to [N II] luminosity ratio. We find that LNII correlates almost linearly with LIR for non AGN galaxies (all having $L_{IR} < 10^{12} L_solar$) in our sample, which implies that LNII can serve as a SFR tracer which is particularly useful for high redshift galaxies which will be observed with forthcoming submm spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Our analysis shows that the deviation from the mean LNII-LIR relation correlates with tracers of the ionization parameter, which suggests the scatter in this relation is mainly due to the variations in the hardness, and/or ionization parameter, of the ambient galactic UV field among the sources in our sample.
Galactic and extra-galactic sources produce X-rays that are often absorbed by molecules and atoms in giant molecular clouds (GMCs), which provides valuable information about their composition and physical state. We mimic this phenomenon with a labora tory Z-pinch X-ray source, which is impinged on neutral molecular gas. The novel technique produces a soft X-ray pseudo continuum using a pulsed-current generator. The absorbing gas is injected from a 1 cm long planar gas-puff without any window or vessel along the line of sight. An X-ray spectrometer with a resolving power of $lambda/Deltalambdasim$420, comparable to that of astrophysical space instruments, records the absorbed spectra. This resolution clearly resolves the molecular lines from the atomic lines; therefore, motivating the search of molecular signature in astrophysical X-ray spectra. The experimental setup enables different gas compositions and column densities. K-shell spectra of CO$_2$, N$_2$ and O$_2$ reveal a plethora of absorption lines and photo-electric edges measured at molecular column densities between $sim$10$^{16}$ cm$^{-2}$ -- 10$^{18}$ cm$^{-2}$ typical of GMCs. We find that the population of excited-states, contributing to the edge, increases with gas density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا