ﻻ يوجد ملخص باللغة العربية
Formation of supermassive stars (SMSs) with mass ~10^4 Msun is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al. (2016), where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disk systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disk, and more than 10 stars with masses of a few times 10^3 Msun are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disk system is formed. Only a few SMSs with masses ~ 10^4 Msun are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive blackholes at the end of their lives.
Recent multi-wavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultra-violet radiation, photoevaporation may provid
Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodyn
We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. R
We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-
Using the Boltzmann-radiation-hydrodynamics code, which solves the Boltzmann equation for neutrino transport, we present the results of the simulations with the nuclear equations of state (EOSs) of Lattimer and Swesty (LS) and Furusawa and Shen (FS).