ترغب بنشر مسار تعليمي؟ اضغط هنا

The Boltzmann-radiation-hydrodynamics Simulations of Core-collapse Supernovae with Different Equations of State: the Role of Nuclear Composition and the Behavior of Neutrinos

111   0   0.0 ( 0 )
 نشر من قبل Akira Harada
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the Boltzmann-radiation-hydrodynamics code, which solves the Boltzmann equation for neutrino transport, we present the results of the simulations with the nuclear equations of state (EOSs) of Lattimer and Swesty (LS) and Furusawa and Shen (FS). We extend the simulation time of the LS model and conduct thorough investigations, though our previous paper briefly reported some of the results. Only the LS model shows the shock revival. This seems to originate from the nuclear composition: the different nuclear composition results in the different energy loss by photodissociation and hence the different strength of the prompt convection and the later neutrino-driven convection. The protoneutron star seen in the FS model is more compact than that in the LS model because the existence of multinuclear species softens the EOS. For the behavior of neutrinos, we examined the flux and the Eddington tensor of neutrinos. In the optically thick region, the diffusion of neutrinos and the dragging by the motion of matter determine the flux. In the optically thin region, the free-streaming determines it. The Eddington tensor is compared with that obtained from the M1-closure relation. The M1-closure scheme overestimates the contribution from the velocity-dependent terms in the semitransparent region.



قيم البحث

اقرأ أيضاً

414 - S.I. Blinnikov 2009
The equation of state and composition of matter are calculated for conditions typical for pre-collapse and early collapse stages in core collapse supernovae. The composition is evaluated under the assumption of nuclear statistical equilibrium, when t he matter is considered as an `almost ideal gas with corrections due to thermal excitations of nuclei, to free nucleon degeneracy, and to Coulomb and surface energy corrections. The account of these corrections allows us to obtain the composition for densities a bit below the nuclear matter density. Through comparisons with the equation of state (EOS) developed by Shen et al. we examine the approximation of one representative nucleus used in most of recent supernova EOSs. We find that widely distributed compositions in the nuclear chart are different, depending on the mass formula, while the thermodynamical quantities are quite close to those in the Shens EOS.
We present gravitational wave (GW) signal predictions from four 3D multi-group neutrino hydrodynamics simulations of core-collapse supernovae of progenitors with 11.2 Msun, 20 Msun, and 27 Msun. GW emission in the pre-explosion phase strongly depends on whether the post-shock flow is dominated by the standing accretion shock instability (SASI) or convection and differs considerably from 2D models. SASI activity produces a strong signal component below 250 Hz through asymmetric mass motions in the gain layer and a non-resonant coupling to the proto-neutron star (PNS). Both convection- and SASI-dominated models show GW emission above 250 Hz, but with considerably lower amplitudes than in 2D. This is due to a different excitation mechanism for high-frequency l=2 motions in the PNS surface, which are predominantly excited by PNS convection in 3D. Resonant excitation of high-frequency surface g-modes in 3D by mass motions in the gain layer is suppressed compared to 2D because of smaller downflow velocities and a lack of high-frequency variability in the downflows. In the exploding 20 Msun model, shock revival results in enhanced low-frequency emission due to a change of the preferred scale of the convective eddies in the PNS convection zone. Estimates of the expected excess power in two frequency bands suggests that second-generation detectors will only be able to detect very nearby events, but that third-generation detectors could distinguish SASI- and convection-dominated models at distances of ~10 kpc.
133 - M. Witt , A. Psaltis , H. Yasin 2021
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev eral seconds. We present a broad study based on three progenitors (11.2 $M_odot$, 15 $M_odot$, and 27 $M_odot$), different neutrino-heating efficiencies, and various rotation rates. We show that the first seconds after shock revival determine the final explosion energy, remnant mass, and properties of ejected matter. Our results suggest that a continued mass accretion increases the explosion energy even at late times. We link the late-time mass accretion to initial conditions such as rotation strength and shock deformation at explosion time. Only some of our simulations develop a neutrino-driven wind that survives for several seconds. This indicates that neutrino-driven winds are not a standard feature expected after every successful explosion. Even if our neutrino treatment is simple, we estimate the nucleosynthesis of the exploding models for the 15 $M_odot$ progenitor after correcting the neutrino energies and luminosities to get a more realistic electron fraction.
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, thre e neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.
Hydrogen-rich supernovae, known as Type II (SNe II), are the most common class of explosions observed following the collapse of the core of massive stars. We use analytical estimates and population synthesis simulations to assess the fraction of SNe II progenitors that are expected to have exchanged mass with a companion prior to explosion. We estimate that 1/3 to 1/2 of SN II progenitors have a history of mass exchange with a binary companion before exploding. The dominant binary channels leading to SN II progenitors involve the merger of binary stars. Mergers are expected to produce a diversity of SN II progenitor characteristics, depending on the evolutionary timing and properties of the merger. Alternatively, SN II progenitors from interacting binaries may have accreted mass from their companion, and subsequently been ejected from the binary system after their companion exploded. We show that the overall fraction of SN II progenitors that are predicted to have experienced binary interaction is robust against the main physical uncertainties in our models. However, the relative importance of different binary evolutionary channels is affected by changing physical assumptions. We further discuss ways in which binarity might contribute to the observed diversity of SNe II by considering potential observational signatures arising from each binary channel. For supernovae which have a substantial H-rich envelope at explosion (i.e., excluding Type IIb SNe), a surviving non-compact companion would typically indicate that the supernova progenitor star was in a wide, non-interacting binary. We argue that a significant fraction of even Type II-P SNe are expected to have gained mass from a companion prior to explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا