ﻻ يوجد ملخص باللغة العربية
We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ~10 Mo and a highly variable luminosity of 10^{38}-10^{39} erg/s, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ~10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10^{-3} pc, which is ~100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.
Direct collapse within dark matter (DM) halos is a promising path to form supermassive black hole (SMBH) seeds at high redshifts. The outer part of this collapse remains optically thin, and has been studied intensively using numerical simulations. Ho
Observations of high-redshift quasars imply the presence of supermassive black holes already at z~ 7.5. An appealing and promising pathway to their formation is the direct collapse scenario of a primordial gas in atomic-cooling haloes at z ~ 10 - 20,
We study the early stage of the formation of seed supermassive black holes via direct collapse in dark matter (DM) halos, in the cosmological context. We perform high-resolution zoom-in simulations of such collapse at high-$z$. Using the adaptive mes
We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dyn
Direct collapse models for black hole (BH) formation predict massive ($sim 10^5 M_{odot}$) seeds, which hold great appeal as a means to rapidly grow the observed $sim 10^9 M_{odot}$ quasars by $zgtrsim 7$; however, their formation requires fine-tuned