ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse

112   0   0.0 ( 0 )
 نشر من قبل Neil M. H. Vaytet
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Neil Vaytet




اسأل ChatGPT حول البحث

Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodynamics. However, dust opacities which dominate extinction show large variations as a function of frequency. In this paper, we used frequency-dependent radiative transfer to investigate the influence of the opacity variations on the properties of Larsons first core. We used a multigroup M1 moment model in a 1D radiation hydrodynamics code to simulate the spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust opacities for five different temperature ranges were used to compute Planck and Rosseland means inside each frequency group. The results are very consistent with previous studies and only small differences were observed between the grey and multigroup simulations. For a same central density, the multigroup simulations tend to produce first cores with a slightly higher radius and central temperature. We also performed simulations of the collapse of a 10 and 0.1 solar mass cloud, which showed the properties of the first core to be independent of the initial cloud mass, with again no major differences between grey and multigroup models. For Larsons first collapse, where temperatures remain below 2000 K, the vast majority of the radiation energy lies in the IR regime and the system is optically thick. In this regime, the grey approximation does a good job reproducing the correct opacities, as long as there are no large opacity variations on scales much smaller than the width of the Planck function. The multigroup method is however expected to yield more important differences in the later stages of the collapse when high energy (UV and X-ray) radiation is present and matter and radiation are strongly decoupled.



قيم البحث

اقرأ أيضاً

Formation of supermassive stars (SMSs) with mass ~10^4 Msun is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al. (2016), where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disk systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disk, and more than 10 stars with masses of a few times 10^3 Msun are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disk system is formed. Only a few SMSs with masses ~ 10^4 Msun are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive blackholes at the end of their lives.
We simulate the early stages of the evolution of turbulent, virialized, high-mass protostellar cores, with primary attention to how cores fragment, and whether they form a small or large number of protostars. Our simulations use the Orion adaptive me sh refinement code to follow the collapse from ~0.1 pc scales to ~10 AU scales, for durations that cover the main fragmentation phase, using three-dimensional gravito-radiation hydrodynamics. We find that for a wide range of initial conditions radiation feedback from accreting protostars inhibits the formation of fragments, so that the vast majority of the collapsed mass accretes onto one or a few objects. Most of the fragmentation that does occur takes place in massive, self-shielding disks. These are driven to gravitational instability by rapid accretion, producing rapid mass and angular momentum transport that allows most of the gas to accrete onto the central star rather than forming fragments. In contrast, a control run using the same initial conditions but an isothermal equation of state produces much more fragmentation, both in and out of the disk. We conclude that massive cores with observed properties are not likely to fragment into many stars, so that, at least at high masses, the core mass function probably determines the stellar initial mass function. Our results also demonstrate that simulations of massive star forming regions that do not include radiative transfer, and instead rely on a barotropic equation of state or optically thin heating and cooling curves, are likely to produce misleading results.
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, thre e neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.
We investigate protostellar collapse of molecular cloud cores by numerical simulations, taking into account turbulence and magnetic fields. By using the adaptive mesh refinement technique, the collapse is followed over a wide dynamic range from the s cale of a turbulent cloud core to that of the first core. The cloud core is lumpy in the low density region owing to the turbulence, while it has a smooth density distribution in the dense region produced by the collapse. The shape of the dense region depends mainly on the mass of the cloud core; a massive cloud core tends to be prolate while a less massive cloud core tends to be oblate. In both cases, anisotropy of the dense region increases during the isothermal collapse. The minor axis of the dense region is always oriented parallel to the local magnetic field. All the models eventually yield spherical first cores supported mainly by the thermal pressure. Most of turbulent cloud cores exhibit protostellar outflows around the first cores. These outflows are classified into two types, bipolar and spiral flows, according to the morphology of the associated magnetic field. Bipolar flow often appears in the less massive cloud core. The rotation axis of the first core is oriented parallel to the local magnetic field for bipolar flow, while the orientation of the rotation axis from the global magnetic field depends on the magnetic field strength. In spiral flow, the rotation axis is not aligned with the local magnetic field.
Radiative transfer has a strong impact on the collapse and the fragmentation of prestellar dense cores. We present the radiation-hydrodynamics solver we designed for the RAMSES code. The method is designed for astrophysical purposes, and in particula r for protostellar collapse. We present the solver, using the co-moving frame to evaluate the radiative quantities. We use the popular flux limited diffusion approximation, under the grey approximation (one group of photon). The solver is based on the second-order Godunov scheme of RAMSES for its hyperbolic part, and on an implicit scheme for the radiation diffusion and the coupling between radiation and matter. We report in details our methodology to integrate the RHD solver into RAMSES. We test successfully the method against several conventional tests. For validation in 3D, we perform calculations of the collapse of an isolated 1 M_sun prestellar dense core, without rotation. We compare successfully the results with previous studies using different models for radiation and hydrodynamics. We have developed a full radiation hydrodynamics solver in the RAMSES code, that handles adaptive mesh refinement grids. The method is a combination of an explicit scheme and an implicit scheme, accurate to the second-order in space. Our method is well suited for star formation purposes. Results of multidimensional dense core collapse calculations with rotation are presented in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا