ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical deformation of 2+1 dimensional double torus universe

169   0   0.0 ( 0 )
 نشر من قبل Masaru Siino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Masaru Siino




اسأل ChatGPT حول البحث

In (2+1)-dimensional pure gravity with cosmological constant, the dynamics of double torus universe with pinching parameter is investigated. Each mode of affine stretching deformation is illustrated in the context of horizontal foliation along the holomorphic quadratic differential. The formulation of the Einstein Hilbert action for the parameters of the affine stretching is developed. Then the dynamics along one holomorphic quadratic differential will be solved concretely.



قيم البحث

اقرأ أيضاً

231 - Masaru Siino 2015
A homogeneous two-dimensional metric including the degrees of freedom of Teichmuller deformation is developed. The Teichmuller deformation is incorporated by affine stretching of complex structure. According to Yamadas investigation by pinching param eter, concrete formulation for a higher genus Riemann surface can be realized. We will have a homogeneous standard metric including the dynamical degrees of freedom as Teichmuller deformation in a leading order of the pinching parameter, which would be treated as homogeneous anisotropic metric for a double torus universe, which satisfy momentum constraints.
We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions mad e, this conformally invariant wave operator is unique. The corresponding conformally invariant wave equation can be obtained from a Lagrangian which is explicitly given. We discuss how our result compares to previous works, in particular we hope to clarify the situation between conflicting results.
Recently a cubic Galileon cosmological model was derived by the assumption that the field equations are invariant under the action of point transformations. The cubic Galileon model admits a second conservation law which means that the field equation s form an integrable system. The analysis of the critical points for this integrable model is the main subject of this work. To perform the analysis, we work on dimensionless variables different from that of the Hubble normalization. New critical points are derived while the gravitational effects which follow from the cubic term are studied.
In this work we ask how an Unruh-DeWitt (UD) detector with harmonic oscillator internal degrees of freedom $Q$ measuring an evolving quantum matter field $Phi(bm{x}, t)$ in an expanding universe with scale factor $a(t)$ responds. We investigate the d etectors response which contains non-Markovian information about the quantum field squeezed by the dynamical spacetime. The challenge is in the memory effects accumulated over the evolutionary history. We first consider a detector $W$, the `textsl{Witness}, which co-existed and evolved with the quantum field from the beginning. We derive a nonMarkovian quantum Langevin equation for the detectors $Q$ by integrating over the squeezed quantum field. The solution of this integro-differential equation would answer our question, in principle, but very challenging, in practice. Striking a compromise, we then ask, to what extent can a detector $D$ introduced at late times, called the `textsl{Detective}, decipher past memories. This situation corresponds to many cosmological experiments today probing specific stages in the past, such as COBE targeting activities at the surface of last scattering. Somewhat surprisingly we show that it is possible to retrieve to some degree certain global physical quantities, such as the resultant squeezing, particles created, quantum coherence and correlations. The reason is because the quantum field has all the fine-grained information from the beginning in how it was driven by the cosmic dynamics $a(t)$. How long the details of past history can persist in the quantum field depends on the memory time. The fact that a squeezed field cannot come to complete equilibrium under constant driving, as in an evolving spacetime, actually helps to retain the memory. We discuss interesting features and potentials of this `textit{archaeological} perspective toward cosmological issues.
Using Relativistic Quantum Geometry we study back-reaction effects of space-time inside the causal horizon of a static de Sitter metric, in order to make a quantum thermodynamical description of space-time. We found a finite number of discrete energy levels for a scalar field from a polynomial condition of the confluent hypergeometric functions expanded around $r=0$. As in the previous work, we obtain that the uncertainty principle is valid for each energy level on sub-horizon scales of space-time. We found that temperature and entropy are dependent on the number of sub-states on each energys level and the Bekenstein-Hawking temperature of each energy level is recovered when the number of sub-states of a given level tends to infinity. We propose that the primordial state of the universe could be described by a de Sitter metric with Planck energy $E_p=m_p,c^2$, and a B-H temperature: $T_{BH}=left(frac{hbar,c}{2pi,l_p,K_B}right)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا