ﻻ يوجد ملخص باللغة العربية
In this work we ask how an Unruh-DeWitt (UD) detector with harmonic oscillator internal degrees of freedom $Q$ measuring an evolving quantum matter field $Phi(bm{x}, t)$ in an expanding universe with scale factor $a(t)$ responds. We investigate the detectors response which contains non-Markovian information about the quantum field squeezed by the dynamical spacetime. The challenge is in the memory effects accumulated over the evolutionary history. We first consider a detector $W$, the `textsl{Witness}, which co-existed and evolved with the quantum field from the beginning. We derive a nonMarkovian quantum Langevin equation for the detectors $Q$ by integrating over the squeezed quantum field. The solution of this integro-differential equation would answer our question, in principle, but very challenging, in practice. Striking a compromise, we then ask, to what extent can a detector $D$ introduced at late times, called the `textsl{Detective}, decipher past memories. This situation corresponds to many cosmological experiments today probing specific stages in the past, such as COBE targeting activities at the surface of last scattering. Somewhat surprisingly we show that it is possible to retrieve to some degree certain global physical quantities, such as the resultant squeezing, particles created, quantum coherence and correlations. The reason is because the quantum field has all the fine-grained information from the beginning in how it was driven by the cosmic dynamics $a(t)$. How long the details of past history can persist in the quantum field depends on the memory time. The fact that a squeezed field cannot come to complete equilibrium under constant driving, as in an evolving spacetime, actually helps to retain the memory. We discuss interesting features and potentials of this `textit{archaeological} perspective toward cosmological issues.
We study, in the framework of open quantum systems, the entanglement dynamics for a quantum system composed of two uniformly accelerated Unruh-Dewitt detectors interacting with a bath of massive scalar fields in the Minkowski vacuum. We find that the
In this paper, we study the changes of quantum effects of a growing universe by using Wheeler-DeWitt equation (WDWE) together with de Broglie-Bohm quantum trajectory approach. From WDWE, we obtain the quantum modified Friedmann equations which have a
We study the dynamics of steering between two correlated Unruh-Dewitt detectors when one of them locally interacts with external scalar field via different quantifiers. We find that the quantum steering, either measured by the entropic steering inequ
We study the anti-Unruh effect for an entangled quantum state in reference to the counterintuitive cooling previously pointed out for an accelerated detector coupled to the vacuum. We show that quantum entanglement for an initially entangled (spaceli
So far none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here we outline preliminary result