ﻻ يوجد ملخص باللغة العربية
We build the general conformally invariant linear wave operator for a free, symmetric, second-rank tensor field in a d-dimensional ($dgeqslant 2$) metric manifold, and explicit the special case of maximally symmetric spaces. Under the assumptions made, this conformally invariant wave operator is unique. The corresponding conformally invariant wave equation can be obtained from a Lagrangian which is explicitly given. We discuss how our result compares to previous works, in particular we hope to clarify the situation between conflicting results.
We show that the Laplace-Beltrami equation $square_6 a =j$ in $(setR^6,eta)$, $eta := mathrm{diag}(+----+)$, leads under very moderate assumptions to both the Maxwell equations and the conformal Eastwood-Singer gauge condition on conformally flat spa
A background-independent route towards a universal continuum limit in discrete models of quantum gravity proceeds through a background-independent form of coarse graining. This review provides a pedagogical introduction to the conceptual ideas underl
We obtain a new form for the action of a nonrelativistic particle coupled to Newtonian gravity. The result is different from that existing in the literature which, as shown here, is riddled with problems and inconsistencies. The present derivation is
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the
Four-dimensional random geometries can be generated by statistical models with rank-4 tensors as random variables. These are dual to discrete building blocks of random geometries. We discover a potential candidate for a continuum limit in such a mode