ﻻ يوجد ملخص باللغة العربية
A homogeneous two-dimensional metric including the degrees of freedom of Teichmuller deformation is developed. The Teichmuller deformation is incorporated by affine stretching of complex structure. According to Yamadas investigation by pinching parameter, concrete formulation for a higher genus Riemann surface can be realized. We will have a homogeneous standard metric including the dynamical degrees of freedom as Teichmuller deformation in a leading order of the pinching parameter, which would be treated as homogeneous anisotropic metric for a double torus universe, which satisfy momentum constraints.
In (2+1)-dimensional pure gravity with cosmological constant, the dynamics of double torus universe with pinching parameter is investigated. Each mode of affine stretching deformation is illustrated in the context of horizontal foliation along the ho
The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotat
We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2
General relativity can be tested by comparing the binary-inspiral signals found in LIGO--Virgo data against waveform models that are augmented with artificial degrees of freedom. This approach suffers from a number of logical and practical pitfalls.
A differential bulk-surface relation of the lagrangian of General Relativity has been derived by Padmanabhan. This has relevance to gravitational information and degrees of freedom. An alternate derivation is given based on the differential form gaug