ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-time statistics and generalized relaxation equations

387   0   0.0 ( 0 )
 نشر من قبل Enrico Scalas
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Enrico Scalas




اسأل ChatGPT حول البحث

Using two simple examples, the continuous-time random walk as well as a two state Markov chain, the relation between generalized anomalous relaxation equations and semi-Markov processes is illustrated. This relation is then used to discuss continuous-time random statistics in a general setting, for statistics of convolution-type. Two examples are presented in some detail: the sum statistic and the maximum statistic.



قيم البحث

اقرأ أيضاً

We recover the Donsker-Varadhan large deviations principle (LDP) for the empirical measure of a continuous time Markov chain on a countable (finite or infinite) state space from the joint LDP for the empirical measure and the empirical flow proved in [2].
129 - Soon Hoe Lim 2019
We study functionals, such as heat and work, along trajectories of a class of multi-dimensional generalized Langevin systems in various limiting situations that correspond to different level of homogenization. These are the situations where one or mo re of the inertial time scale(s), the memory time scale(s) and the noise correlation time scale(s) of the systems are taken to zero. We find that, unless one restricts to special situations that do not break symmetry of the Onsager matrix associated with the fast dynamics, it is generally not possible to express the effective evolution of these functionals solely in terms of trajectory of the homogenized process describing the system dynamics via the widely adopted Stratonovich convention. In fact, an anomalous term is often needed for a complete description, implying that convergence of these functionals needs more information than simply the limit of the dynamical process. We trace the origin of such impossibility to area anomaly, thereby linking the symmetry breaking and area anomaly. This hold important consequences for many nonequilibrium systems that can be modeled by generalized Langevin equations. Our convergence results hold in a strong pathwise sense.
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with b iased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps subordinated to a (continuous-time) fractional Poisson process. We call this process `{it space-time Mittag-Leffler process}. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a `well-scaled diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the `state density kernel solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time fractional Mittag-Leffler process. The approach of construction of good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.
We introduce the exit time finite state projection (ETFSP) scheme, a truncation-based method that yields approximations to the exit distribution and occupation measure associated with the time of exit from a domain (i.e., the time of first passage to the complement of the domain) of time-homogeneous continuous-time Markov chains. We prove that: (i) the computed approximations bound the measures from below; (ii) the total variation distances between the approximations and the measures decrease monotonically as states are added to the truncation; and (iii) the scheme converges, in the sense that, as the truncation tends to the entire state space, the total variation distances tend to zero. Furthermore, we give a computable bound on the total variation distance between the exit distribution and its approximation, and we delineate the cases in which the bound is sharp. We also revisit the related finite state projection scheme and give a comprehensive account of its theoretical properties. We demonstrate the use of the ETFSP scheme by applying it to two biological examples: the computation of the first passage time associated with the expression of a gene, and the fixation times of competing species subject to demographic noise.
Computing the stationary distributions of a continuous-time Markov chain (CTMC) involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and the equations cannot be solved analytically o r numerically. Several approximation schemes overcome this issue by truncating the state space to a manageable size. In this review, we first give a comprehensive theoretical account of the stationary distributions and their relation to the long-term behaviour of CTMCs that is readily accessible to non-experts and free of irreducibility assumptions made in standard texts. We then review truncation-based approximation schemes for CTMCs with infinite state spaces paying particular attention to the schemes convergence and the errors they introduce, and we illustrate their performance with an example of a stochastic reaction network of relevance in biology and chemistry. We conclude by discussing computational trade-offs associated with error control and several open questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا