ﻻ يوجد ملخص باللغة العربية
We introduce the exit time finite state projection (ETFSP) scheme, a truncation-based method that yields approximations to the exit distribution and occupation measure associated with the time of exit from a domain (i.e., the time of first passage to the complement of the domain) of time-homogeneous continuous-time Markov chains. We prove that: (i) the computed approximations bound the measures from below; (ii) the total variation distances between the approximations and the measures decrease monotonically as states are added to the truncation; and (iii) the scheme converges, in the sense that, as the truncation tends to the entire state space, the total variation distances tend to zero. Furthermore, we give a computable bound on the total variation distance between the exit distribution and its approximation, and we delineate the cases in which the bound is sharp. We also revisit the related finite state projection scheme and give a comprehensive account of its theoretical properties. We demonstrate the use of the ETFSP scheme by applying it to two biological examples: the computation of the first passage time associated with the expression of a gene, and the fixation times of competing species subject to demographic noise.
Computing the stationary distributions of a continuous-time Markov chain (CTMC) involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and the equations cannot be solved analytically o
This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions of continuous-time Markov chains on a subset of the non-negative integers. A new identity for stationary measures is established. In particular, f
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
In this paper we characterize the distribution of the first exit time from an arbitrary open set for a class of semi-Markov processes obtained as time-changed Markov processes. We estimate the asymptotic behaviour of the survival function (for large
We recover the Donsker-Varadhan large deviations principle (LDP) for the empirical measure of a continuous time Markov chain on a countable (finite or infinite) state space from the joint LDP for the empirical measure and the empirical flow proved in [2].