ﻻ يوجد ملخص باللغة العربية
We construct admissible circulant Laplacian matrix functions as generators for strictly increasing random walks on the integer line. These Laplacian matrix functions refer to a certain class of Bernstein functions. The approach has connections with biased walks on digraphs. Within this framework, we introduce a space-time generalization of the Poisson process as a strictly increasing walk with discrete Mittag-Leffler jumps subordinated to a (continuous-time) fractional Poisson process. We call this process `{it space-time Mittag-Leffler process}. We derive explicit formulae for the state probabilities which solve a Cauchy problem with a Kolmogorov-Feller (forward) difference-differential equation of general fractional type. We analyze a `well-scaled diffusion limit and obtain a Cauchy problem with a space-time convolution equation involving Mittag-Leffler densities. We deduce in this limit the `state density kernel solving this Cauchy problem. It turns out that the diffusion limit exhibits connections to Prabhakar general fractional calculus. We also analyze in this way a generalization of the space-time fractional Mittag-Leffler process. The approach of construction of good Laplacian generator functions has a large potential in applications of space-time generalizations of the Poisson process and in the field of continuous-time random walks on digraphs.
The Continuous-Time Random Walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this article we will show how the random combination of two different unbiased CTRWs can give raise to a process with clear drift, if on
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the
We study a particular class of complex-valued random variables and their associated random walks: the complex obtuse random variables. They are the generalization to the complex case of the real-valued obtuse random variables which were introduced in
We prove that the model of Activated Random Walks on Z^d with biased jump distribution does not fixate for any positive density, if the sleep rate is small enough, as well as for any finite sleep rate, if the density is close enough to 1. The proof u
A general method is presented to explicitly compute autocovariance functions for non-Poisson dichotomous noise based on renewal theory. The method is specialized to a random telegraph signal of Mittag-Leffler type. Analytical predictions are compared