ﻻ يوجد ملخص باللغة العربية
Computing the stationary distributions of a continuous-time Markov chain (CTMC) involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and the equations cannot be solved analytically or numerically. Several approximation schemes overcome this issue by truncating the state space to a manageable size. In this review, we first give a comprehensive theoretical account of the stationary distributions and their relation to the long-term behaviour of CTMCs that is readily accessible to non-experts and free of irreducibility assumptions made in standard texts. We then review truncation-based approximation schemes for CTMCs with infinite state spaces paying particular attention to the schemes convergence and the errors they introduce, and we illustrate their performance with an example of a stochastic reaction network of relevance in biology and chemistry. We conclude by discussing computational trade-offs associated with error control and several open questions.
We introduce the exit time finite state projection (ETFSP) scheme, a truncation-based method that yields approximations to the exit distribution and occupation measure associated with the time of exit from a domain (i.e., the time of first passage to
This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions of continuous-time Markov chains on a subset of the non-negative integers. A new identity for stationary measures is established. In particular, f
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
We recover the Donsker-Varadhan large deviations principle (LDP) for the empirical measure of a continuous time Markov chain on a countable (finite or infinite) state space from the joint LDP for the empirical measure and the empirical flow proved in [2].
This paper contributes an in-depth study of properties of continuous time Markov chains (CTMCs) on non-negative integer lattices $N_0^d$, with particular interest in one-dimensional CTMCs with polynomial transitions rates. Such stochastic processes a