ﻻ يوجد ملخص باللغة العربية
The low-Reynolds number hydrodynamics of slender ribbons is accurately captured by slender-ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length scales characterising the ribbons are well separated. We show in this paper that the force distribution across the width of an isolated ribbon located in a infinite fluid can be determined analytically, irrespective of the ribbons shape. This, in turn, reduces the surface integrals in the slender-ribbon theory equations to a line integral analogous to the one arising in slender-body theory to determine the dynamics of filaments. This result is then used to derive analytical solutions to the motion of a rigid plate ellipsoid and a ribbon torus and to propose a ribbon resistive-force theory, thereby extending the resistive-force theory for slender filaments.
Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the at
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro
Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult t
The incompressible Stokes equations can classically be recast in a boundary integral (BI) representation, which provides a general method to solve low-Reynolds number problems analytically and computationally. Alternatively, one can solve the Stokes
Run-and-tumble motility is widely used by swimming microorganisms including numerous prokaryotic eukaryotic organisms. Here, we experimentally investigate the run-and-tumble dynamics of the bacterium E. coli in polymeric solutions. We find that even