ﻻ يوجد ملخص باللغة العربية
Run-and-tumble motility is widely used by swimming microorganisms including numerous prokaryotic eukaryotic organisms. Here, we experimentally investigate the run-and-tumble dynamics of the bacterium E. coli in polymeric solutions. We find that even small amounts of polymer in solution can drastically change E. coli dynamics: cells tumble less and their velocity increases, leading to an enhancement in cell translational diffusion and a sudden decline in rotational diffusion. We show that suppression of tumbling is due to fluid viscosity while the enhancement in swimming speed is mainly due to fluid elasticity. Visualization of single fluorescently labeled DNA polymers reveals that the flow generated by individual E. coli is sufficiently strong to stretch polymer molecules and induce elastic stresses in the fluid, which in turn can act on the cell in such a way to enhance its transport. Our results show that the transport and spread of chemotactic cells can be independently modified and controlled by the fluid material properties.
The low-Reynolds number hydrodynamics of slender ribbons is accurately captured by slender-ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length scales characterising the ribbons are well separated. We show
We consider self-propelled droplets which are driven by internal flow. Tracer particles, which are advected by the flow, in general follow chaotic trajectories, even though the motion of the autonomous swimmer is completely regular. The flow is mixin
Flux of rigid or soft particles (such as drops, vesicles, red blood cells, etc.) in a channel is a complex function of particle concentration, which depends on the details of induced dissipation and suspension structure due to hydrodynamic interactio
The geometric phase techniques for swimming in viscous flows express the net displacement of a swimmer as a path integral of a field in configuration space. This representation can be transformed into an area integral for simple swimmers using Stokes
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g. algal blooms) and industrial (e.g. biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspens