ﻻ يوجد ملخص باللغة العربية
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far from, or very close to, the wall, but is typically determined numerically for general separations. In this note we determine an asymptotic representation of the local drag for a slender rod parallel to a wall which is valid for all separations. This is possible through matching the behaviour of a rod close to the wall and a rod far from the wall. We show that the leading order drag in both these regimes has been known since 1981 and that they can used to produce a composite representation of the drag which is valid for all separations. This is in contrast to a sphere above a wall, where no simple uniformly valid representation exists. We estimate the error on this composite representation as the separation increases, discuss how the results could be used as resistive-force theory and demonstrate their use on a two-hinged swimmer above a wall.
Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult t
The low-Reynolds number hydrodynamics of slender ribbons is accurately captured by slender-ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length scales characterising the ribbons are well separated. We show
Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure dro
A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhancement of throughput due to the change in cross-sectional area. The la
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakl