ﻻ يوجد ملخص باللغة العربية
Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the attraction or repulsion between individuals, and hence their collective behaviour. Meanwhile, HIs between swimming appendages (e.g. cilia and flagella) influence the emergence of swimming gaits, synchronised bundles and metachronal waves. In this study, we address the issue of HIs between slender filaments separated by a distance larger than their contour length (d>L) by means of asymptotic calculations and numerical simulations. We first derive analytical expressions for the extended resistance matrix of two arbitrarily-shaped rigid filaments as a series expansion in inverse powers of d/L>1. The coefficients in our asymptotic series expansion are then evaluated using two well-established methods for slender filaments, resistive-force theory (RFT) and slender-body theory (SBT), and our asymptotic theory is verified using numerical simulations based on SBT for the case of two parallel helices. The theory captures the qualitative features of the interactions in the regime d/L>1, which opens the path to a deeper physical understanding of hydrodynamically governed phenomena such as inter-filament synchronisation and multiflagellar propulsion. To demonstrate the usefulness of our results, we next apply our theory to the case of two helices rotating side-by-side, where we quantify the dependence of all forces and torques on the distance and phase difference between them. Using our understanding of pairwise HIs, we then provide physical intuition for the case of a circular array of rotating helices. Our theoretical results will be useful for the study of HIs between bacterial flagella, nodal cilia, and slender microswimmers.
The low-Reynolds number hydrodynamics of slender ribbons is accurately captured by slender-ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length scales characterising the ribbons are well separated. We show
Phoretic particles self-propel using self-generated physico-chemical gradients at their surface. Within a suspension, they interact hydrodynamically by setting the fluid around them into motion, and chemically by modifying the chemical background see
Phoretic particles exploit local self-generated physico-chemical gradients to achieve self-propulsion at the micron scale. The collective dynamics of a large number of such particles is currently the focus of intense research efforts, both from a phy
Slender-body approximations have been successfully used to explain many phenomena in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity solutions to represent the flow. These singularities can be difficult t
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro