ترغب بنشر مسار تعليمي؟ اضغط هنا

An invariant characterization of the quasi-spherical Szekeres dust models

560   0   0.0 ( 0 )
 نشر من قبل David McNutt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quasi-spherical Szekeres dust solutions are a generalization of the spherically symmetric Lemaitre-Tolman-Bondi dust models where the spherical shells of constant mass are non-concentric. The quasi-spherical Szekeres dust solutions can be considered as cosmological models and are potentially models for the formation of primordial black holes in the early universe. Any collapsing quasi-spherical Szekeres dust solution where an apparent horizon covers all shell-crossings that will occur can be considered as a model for the formation of a black hole. In this paper we will show that the apparent horizon can be detected by a Cartan invariant. We will show that particular Cartan invariants characterize properties of these solutions which have a physical interpretation such as: the expansion or contraction of spacetime itself, the relative movement of matter shells, shell-crossings and the appearance of necks and bellies.



قيم البحث

اقرأ أيضاً

We study the differences and equivalences between the non-perturbative description of the evolution of cosmic structure furnished by the Szekeres dust models (a non-spherical exact solution of Einsteins equations) and the dynamics of Cosmological Per turbation Theory (CPT) for dust sources in a $Lambda$CDM background. We show how the dynamics of Szekeres models can be described by evolution equations given in terms of exact fluctuations that identically reduce (at all orders) to evolution equations of CPT in the comoving isochronous gauge. We explicitly show how Szekeres linearised exact fluctuations are specific (deterministic) realisations of standard linear perturbations of CPT given as random fields but, as opposed to the latter perturbations, they can be evolved exactly into the full non-linear regime. We prove two important results: (i) the conservation of the curvature perturbation (at all scales) also holds for the appropriate approximation of the exact Szekeres fluctuations in a $Lambda$CDM background, and (ii) the different collapse morphologies of Szekeres models yields, at nonlinear order, different functional forms for the growth factor that follows from the study of redshift space distortions. The metric based potentials used in linear CPT are computed in terms of the parameters of the linearised Szekeres models, thus allowing us to relate our results to linear CPT results in other gauges. We believe that these results provide a solid starting stage to examine the role of non-perturbative General Relativity in current cosmological research.
In the years 1917-1919 Tullio Levi-Civita published a number of papers presenting new solutions to Einsteins equations. This work, while partially translated, remains largely inaccessible to English speaking authors. In this paper we review these sol utions, and present them in a modern, readable manner. We will also compute both Cartan-Karlhede and Carminati-Mclenaghan invariants such that these solutions are invariantly characterized by two distinct methods. These methods will allow for these solutions to be totally, and invariantly characterized. Because of the variety of solutions considered here, this paper will also be a useful reference for those seeking to learn to apply the Cartan-Karlhede algorithm in practice.
We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3--dimensional networks of cold dark matter structures (over--densities and/or density voids) undergoing pancake collapse. By reducing Einsteins field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities of structures that evolved, from linear initial data at the last scattering surface, to fully non--linear 10--20 Mpc. scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained -- but fully relativistic non--linear and non--perturbative -- description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.
The Szekeres system is studied with two methods for the determination of conservation laws. Specifically we apply the theory of group invariant transformations and the method of singularity analysis. We show that the Szekeres system admits a Lagrangi an and the conservation laws that we find can be derived by the application of Noethers theorem. The stability for the special solutions of the Szekeres system is studied and it is related with the with the Left or Right Painleve Series which describes the expansions.
We consider a spherically symmetric line element which admits either a black hole geometry or a wormhole geometry and show that in both cases the apparent horizon or the wormhole throat is partially characterized by the zero-set of a single curvature invariant. The detection of the apparent horizon by this invariant is consistent with the geometric horizon detection conjectures and implies that it is a geometric horizon of the black hole, while the detection of the wormhole throat presents a conceptual problem for the conjectures. To distinguish between these surfaces, we determine a set of curvature invariants that fully characterize the apparent horizon and wormhole throat. Motivated by this result, we introduce the concept of a geometric surface as a generalization of a geometric horizon and extend the geometric horizon detection conjectures to geometric surfaces. As an application, we employ curvature invariants to characterize three important surfaces of the line element introduced by Simpson, Martin-Moruno and Visser which describes transitions between regular Vaidya black holes, traversable wormholes, and black bounces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا