ﻻ يوجد ملخص باللغة العربية
The set of points in a metric space is called an $s$-distance set if pairwise distances between these points admit only $s$ distinct values. Two-distance spherical sets with the set of scalar products ${alpha, -alpha}$, $alphain[0,1)$, are called equiangular. The problem of determining the maximum size of $s$-distance sets in various spaces has a long history in mathematics. We suggest a new method of bounding the size of an $s$-distance set in compact two-point homogeneous spaces via zonal spherical functions. This method allows us to prove that the maximum size of a spherical two-distance set in $mathbb{R}^n$, $ngeq 7$, is $frac{n(n+1)}2$ with possible exceptions for some $n=(2k+1)^2-3$, $k in mathbb{N}$. We also prove the universal upper bound $sim frac 2 3 n a^2$ for equiangular sets with $alpha=frac 1 a$ and, employing this bound, prove a new upper bound on the size of equiangular sets in all dimensions. Finally, we classify all equiangular sets reaching this new bound.
We introduce the study of frames and equiangular lines in classical geometries over finite fields. After developing the basic theory, we give several examples and demonstrate finite field analogs of equiangular tight frames (ETFs) produced by modular
A finite subset of a Euclidean space is called an $s$-distance set if there exist exactly $s$ values of the Euclidean distances between two distinct points in the set. In this paper, we prove that the maximum cardinality among all 5-distance sets in
A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distances between two distinct points in $X$. Einhorn and Schoenberg conjectured that the vertices of the regular icosahedron is the only 12-poi
We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the un
A rigidity theory is developed for frameworks in a metric space with two types of distance constraints. Mixed sparsity graph characterisations are obtained for the infinitesimal and continuous rigidity of completely regular bar-joint frameworks in a