ﻻ يوجد ملخص باللغة العربية
We investigate a special class of cellular automata (CA) evolving in a environment filled by an electromagnetic wave. The rules of the Conways Game of Life are modified to account for the ability to retrieve life-sustenance from the field energy. Light-induced self-structuring and self-healing abilities and various dynamic phases are displayed by the CA. Photo-driven genetic selection and the nonlinear feedback of the CA on the electromagnetic field are included in the model, and there are evidences of self-organized light-localization processes. The evolution of the electromagnetic field is based on the Finite Difference Time Domain (FDTD) approach. Applications are envisaged in evolutionary biology, artificial life, DNA replication, swarming, optical tweezing and field-driven soft-matter.
We investigate the quantum dynamics of a spin chain that implements a quantum analog of Conways game of life. We solve the time-dependent Schrodinger equation starting with initial separable states and analyse the evolution of quantum correlations ac
We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exist
We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional tournaments and amateur
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, like dengue, and the threshold of the disease. The coexistence space is composed by two structures representing the human and mosquito populatio
We present a general framework for the study of coevolution in dynamical systems. This phenomenon consists of the coexistence of two dynamical processes on networks of interacting elements: node state change and rewiring of links between nodes. The p