ﻻ يوجد ملخص باللغة العربية
We investigate the quantum dynamics of a spin chain that implements a quantum analog of Conways game of life. We solve the time-dependent Schrodinger equation starting with initial separable states and analyse the evolution of quantum correlations across the lattice. We report examples of evolutions leading to all-entangled chains and/or to time oscillating entangling structures and characterize them by means of entanglement and network measures. The quantum patterns result to be quite different from the classical ones, even in the dynamics of local observables. A peculiar instance is a structure behaving as the quantum analog of a blinker, but that has no classical counterpart.
We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exist
We propose an extended version of quantum dynamics for a certain system S, whose evolution is ruled by a Hamiltonian $H$, its initial conditions, and a suitable set $rho$ of {em rules}, acting repeatedly on S. The resulting dynamics is not necessaril
Quantum entanglement, as the strictly non-classical phenomena, is the kernel of quantum computing and quantum simulation, and has been widely applied ranging from fundamental tests of quantum physics to quantum information processing. The decoherence
The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with
We introduce and explore a one-dimensional hybrid quantum circuit model consisting of both unitary gates and projective measurements. While the unitary gates are drawn from a random distribution and act uniformly in the circuit, the measurements are