The frog model on the rooted d-ary tree changes from transient to recurrent as the number of frogs per site is increased. We prove that the location of this transition is on the same order as the degree of the tree.
In this note, we consider the frog model on $mathbb{Z}^d$ and a two-type version of it with two types of particles. For the one-type model, we show that the asymptotic shape does not depend on the initially activated set and the configuration there.
For the two-type model, we show that the possibility for the types to coexist in that both of them activate infinitely many particles does not depend on the choice of the initially activated sets and the configurations there.
The frog model is an infection process in which dormant particles begin moving and infecting others once they become infected. We show that on the rooted $d$-ary tree with particle density $Omega(d^2)$, the set of visited sites contains a linearly ex
panding ball and the number of visits to the root grows linearly with high probability.
The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $mu$ on the full $d$-ary tree of height $n$. If $mu= Omega( d^2)$, all of the vertices are visited in time
$Theta(nlog n)$ with high probability. Conversely, if $mu = O(d)$ the cover time is $exp(Theta(sqrt n))$ with high probability.
We introduce an extension of the frog model to Euclidean space and prove properties for the spread of active particles. Fix $r>0$ and place a particle at each point $x$ of a unit intensity Poisson point process $mathcal P subseteq mathbb R^d - mathbb
B(0,r)$. Around each point in $mathcal{P}$, put a ball of radius $r$. A particle at the origin performs Brownian motion. When it hits the ball around $x$ for some $x in mathcal P$, new particles begin independent Brownian motions from the centers of the balls in the cluster containing $x$. Subsequent visits to the cluster do nothing. This waking process continues indefinitely. For $r$ smaller than the critical threshold of continuum percolation, we show that the set of activated points in $mathcal P$ approximates a linearly expanding ball. Moreover, in any fixed ball the set of active particles converges to a unit intensity Poisson point process.
The frog model is an interacting particle system on a graph. Active particles perform independent simple random walks, while sleeping particles remain inert until visited by an active particle. Some number of sleeping particles are placed at each sit
e sampled independently from a certain distribution, and then one particle is activated to begin the process. We show that the recurrence or transience of the model is sensitive not just to the expectation but to the entire distribution. This is in contrast to closely related models like branching random walk and activated random walk.