ﻻ يوجد ملخص باللغة العربية
The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $mu$ on the full $d$-ary tree of height $n$. If $mu= Omega( d^2)$, all of the vertices are visited in time $Theta(nlog n)$ with high probability. Conversely, if $mu = O(d)$ the cover time is $exp(Theta(sqrt n))$ with high probability.
The frog model is an infection process in which dormant particles begin moving and infecting others once they become infected. We show that on the rooted $d$-ary tree with particle density $Omega(d^2)$, the set of visited sites contains a linearly ex
We provide a uniform upper bound on the minimal drift so that the one-per-site frog model on a $d$-ary tree is recurrent. To do this, we introduce a subprocess that couples across trees with different degrees. Finding couplings for frog models on nes
We study the recurrence of one-per-site frog model $text{FM}(d, p)$ on a $d$-ary tree with drift parameter $pin [0,1]$, which determines the bias of frogs random walks. We are interested in the minimal drift $p_{d}$ so that the frog model is recurren
In this paper, we show that the first passage time in the frog model on $Z^d$ with $dgeq 2$ has a sublinear variance. This implies that the central limit theorem does not holds at least with the standard diffusive scaling. The proof is based on the m
We study the frog model on Cayley graphs of groups with polynomial growth rate $D geq 3$. The frog model is an interacting particle system in discrete time. We consider that the process begins with a particle at each vertex of the graph and only one