ﻻ يوجد ملخص باللغة العربية
We introduce an extension of the frog model to Euclidean space and prove properties for the spread of active particles. Fix $r>0$ and place a particle at each point $x$ of a unit intensity Poisson point process $mathcal P subseteq mathbb R^d - mathbb B(0,r)$. Around each point in $mathcal{P}$, put a ball of radius $r$. A particle at the origin performs Brownian motion. When it hits the ball around $x$ for some $x in mathcal P$, new particles begin independent Brownian motions from the centers of the balls in the cluster containing $x$. Subsequent visits to the cluster do nothing. This waking process continues indefinitely. For $r$ smaller than the critical threshold of continuum percolation, we show that the set of activated points in $mathcal P$ approximates a linearly expanding ball. Moreover, in any fixed ball the set of active particles converges to a unit intensity Poisson point process.
We study the frog model on Cayley graphs of groups with polynomial growth rate $D geq 3$. The frog model is an interacting particle system in discrete time. We consider that the process begins with a particle at each vertex of the graph and only one
The frog model is an interacting particle system on a graph. Active particles perform independent simple random walks, while sleeping particles remain inert until visited by an active particle. Some number of sleeping particles are placed at each sit
We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion $B$ with Hurst index $H=1/4$. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an appli
We provide a uniform upper bound on the minimal drift so that the one-per-site frog model on a $d$-ary tree is recurrent. To do this, we introduce a subprocess that couples across trees with different degrees. Finding couplings for frog models on nes
The frog model is an infection process in which dormant particles begin moving and infecting others once they become infected. We show that on the rooted $d$-ary tree with particle density $Omega(d^2)$, the set of visited sites contains a linearly ex