ﻻ يوجد ملخص باللغة العربية
The frog model is an interacting particle system on a graph. Active particles perform independent simple random walks, while sleeping particles remain inert until visited by an active particle. Some number of sleeping particles are placed at each site sampled independently from a certain distribution, and then one particle is activated to begin the process. We show that the recurrence or transience of the model is sensitive not just to the expectation but to the entire distribution. This is in contrast to closely related models like branching random walk and activated random walk.
In this note, we consider the frog model on $mathbb{Z}^d$ and a two-type version of it with two types of particles. For the one-type model, we show that the asymptotic shape does not depend on the initially activated set and the configuration there.
We introduce an extension of the frog model to Euclidean space and prove properties for the spread of active particles. Fix $r>0$ and place a particle at each point $x$ of a unit intensity Poisson point process $mathcal P subseteq mathbb R^d - mathbb
We provide a uniform upper bound on the minimal drift so that the one-per-site frog model on a $d$-ary tree is recurrent. To do this, we introduce a subprocess that couples across trees with different degrees. Finding couplings for frog models on nes
The frog model is an infection process in which dormant particles begin moving and infecting others once they become infected. We show that on the rooted $d$-ary tree with particle density $Omega(d^2)$, the set of visited sites contains a linearly ex
The frog model is a branching random walk on a graph in which particles branch only at unvisited sites. Consider an initial particle density of $mu$ on the full $d$-ary tree of height $n$. If $mu= Omega( d^2)$, all of the vertices are visited in time