ﻻ يوجد ملخص باللغة العربية
The excited state dynamics in organic semiconductors plays an important role for many processes associated with light absorption and emission. We have studied the momentum dependence of the lowest singlet excitons in tetracene molecular solids, an archetype system for other organic semiconductors. Our results reveal an anisotropic bandstructure of these excitons with an energy minimum at finite momentum, i. e., a low energy exciton pocket. The existence of such low energy states might have important consequences for the photophysical behavior, also in view of applications in, e. g., organic solar cells. Our studies stress the importance of momentum dependent considerations in organic systems.
Polarized superradiant emission and exciton delocalization in tetracene single crystals are reported. Polarization-, time-, and temperature-resolved spectroscopy evidence the complete polarization of the zero-phonon line of the intrinsic tetracene em
Two-dimensional molecular crystals have been beyond the reach of systematic investigation because of the lack or instability of their well-defined forms. Here, we demonstrate drastically enhanced photostability and Davydov splitting in single and few
Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in sol
Inorganic-organic interfaces are important for enhancing the power conversion efficiency of silicon-based solar cells through singlet exciton fission (SF). We elucidated the structure of the first monolayers of tetracene (Tc), a SF molecule, on hydro
We explore whether the topology of energy landscapes in chemical systems obeys any rules and what these rules are. To answer this and related questions we use several tools: (i)Reduced energy surface and its density of states, (ii) descriptor of stru