ﻻ يوجد ملخص باللغة العربية
Inorganic-organic interfaces are important for enhancing the power conversion efficiency of silicon-based solar cells through singlet exciton fission (SF). We elucidated the structure of the first monolayers of tetracene (Tc), a SF molecule, on hydrogen-passivated Si(111) [H-Si(111)] and hydrogenated amorphous Si (a-Si:H) by combining near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) experiments with density functional theory (DFT) calculations. For samples grown at or below substrate temperatures of 265 K, the resulting ultrathin Tc films are dominated by almost upright-standing molecules. The molecular arrangement is very similar to the Tc bulk phase, with only slightly higher average angle between the conjugated molecular plane normal and the surface normal ($alpha$) around 77{deg}. Judging from carbon K-edge X-ray absorption spectra, the orientation of the Tc molecules are almost identical when grown on H-Si(111) and a-Si:H substrates as well as for (sub)mono- to several-monolayer coverages. Annealing to room temperature, however, changes the film structure towards a smaller $alpha$ of about 63{deg}. A detailed DFT-assisted analysis suggests that this structural transition is correlated with a lower packing density and requires a well-chosen amount of thermal energy. Therefore, we attribute the resulting structure to a distinct monolayer configuration that features less inclined, but still well-ordered molecules. The larger overlap with the substrate wavefunctions makes this arrangement attractive for an optimized interfacial electron transfer in SF-assisted silicon solar cells.
Strain engineering vanadium dioxide thin films is one way to alter this materials characteristic first order transition from semiconductor to metal. In this study we extend the exploitable strain regime by utilizing the very large lattice mismatch of
The effect of the AlOx barrier thickness on magnetic and morphological properties of Ta/Co/(AlOx)/Alq3/Si hybrid structures was systematically studied by means of atomic force microscopy, SQUID magnetometry and nuclear magnetic resonance (NMR). All u
Tellurium (Te) films with monolayer and few-layer thickness are obtained by molecular beam epitaxy on a graphene/6H-SiC(0001) substrate and investigated by in situ scanning tunneling microscopy and spectroscopy (STM/STS). We reveal that the Te films
Nanodiamonds containing color centers open up many applications in quantum information processing, metrology, and quantum sensing. In particular, silicon vacancy (SiV) centers are prominent candidates as quantum emitters due to their beneficial optic
The spin and orbital magnetic moments of the Fe3O4 epitaxial ultrathin film synthesized by plasma assisted simultaneous oxidization on MgO(100) have been studied with X-ray magnetic circular dichroism (XMCD). The ultrathin film retains a rather large