ﻻ يوجد ملخص باللغة العربية
The finite element analysis of high frequency vibrations of quartz crystal plates is a necessary process required in the design of quartz crystal resonators of precision types for applications in filters and sensors. The anisotropic materials and extremely high frequency in radiofrequency range of resonators determine that vibration frequency spectra are complicated with strong couplings of large number of different vibration modes representing deformations which do not appear in usual structural problems. For instance, the higher-order thickness-shear vibrations usually representing the sharp deformation of thin plates in the thickness direction, expecting the analysis is to be done with refined meshing schemes along the relatively small thickness and consequently the large plane area. To be able to represent the precise vibration mode shapes, a very large number of elements are needed in the finite element analysis with either the three-dimensional theory or the higher-order plate theory, although considerable reduction of numbers of degree-of-freedom (DOF) are expected for the two-dimensional analysis without scarifying the accuracy. In this paper, we reviewed the software architecture for the analysis and demonstrated the evaluation and tuning of parameters for the improvement of the analysis with problems of elements with a large number of DOF in each node, or a problem with unusually large bandwidth of the banded stiffness and mass matrices in comparison with conventional finite element formulation. Such a problem can be used as an example for the optimization and tuning of problems from multi-physics analysis which are increasingly important in applications with excessive large number of DOF and bandwidth in engineering.
An efficient method for the calculation of ferromagnetic resonant modes of magnetic structures is presented. Finite-element discretization allows flexible geometries and location dependent material parameters. The resonant modes can be used for a sem
We present a multigrid scheme for the solution of finite-element Hartree-Fock equations for diatomic molecules. It is shown to be fast and accurate, the time effort depending linearly on the number of variables. Results are given for the molecules Li
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element met
We introduce a textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so th
The enrichment formulation of double-interpolation finite element method (DFEM) is developed in this paper. DFEM is first proposed by Zheng emph{et al} (2011) and it requires two stages of interpolation to construct the trial function. The first stag