ﻻ يوجد ملخص باللغة العربية
We introduce a textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so that it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the Peclet number on the so-called textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between $2$ and $4$ with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered.
We present a shock capturing method for large-eddy simulation of turbulent flows. The proposed method relies on physical mechanisms to resolve and smooth sharp unresolved flow features that may otherwise lead to numerical instability, such as shock w
The mass balance of mountain glaciers is of interest for several applications (local hydrology or climate projections), and turbulent fluxes can be an important contributor to glacier surface mass balance during strong melting events. The underlying
We present a successful deployment of high-fidelity Large-Eddy Simulation (LES) technologies based on spectral/hp element methods to industrial flow problems, which are characterized by high Reynolds numbers and complex geometries. In particular, we
The variational multiscale (VMS) formulation is used to develop residual-based VMS large eddy simulation (LES) models for Rayleigh-B{e}nard convection. The resulting model is a mixed model that incorporates the VMS model and an eddy viscosity model.
Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed