ﻻ يوجد ملخص باللغة العربية
An efficient method for the calculation of ferromagnetic resonant modes of magnetic structures is presented. Finite-element discretization allows flexible geometries and location dependent material parameters. The resonant modes can be used for a semi-analytical calculation of the power spectral density of the thermal white-noise, which is relevant for many sensor applications. The proposed method is validated by comparing the noise spectrum of a nano-disk with time-domain simulations.
In this paper we apply an extended Landau-Lifschitz equation, as introduced by Bav{n}as et al. for the simulation of heat-assisted magnetic recording. This equation has similarities with the Landau-Lifshitz-Bloch equation. The Bav{n}as equation is su
Non-linear phase field models are increasingly used for the simulation of fracture propagation models. The numerical simulation of fracture networks of realistic size requires the efficient parallel solution of large coupled non-linear systems. Altho
We present a practical approach for constructing meshes of general rough surfaces with given autocorrelation functions based on the unstructured meshes of nominally smooth surfaces. The approach builds on a well-known method to construct correlated r
Fidimag is an open-source scientific code for the study of magnetic materials at the nano- or micro-scale using either atomistic or finite difference micromagnetic simulations, which are based on solving the Landau-Lifshitz-Gilbert equation. In addit
The finite element analysis of high frequency vibrations of quartz crystal plates is a necessary process required in the design of quartz crystal resonators of precision types for applications in filters and sensors. The anisotropic materials and ext