ﻻ يوجد ملخص باللغة العربية
The enrichment formulation of double-interpolation finite element method (DFEM) is developed in this paper. DFEM is first proposed by Zheng emph{et al} (2011) and it requires two stages of interpolation to construct the trial function. The first stage of interpolation is the same as the standard finite element interpolation. Then the interpolation is reproduced by an additional procedure using the nodal values and nodal gradients which are derived from the first stage as interpolants. The re-constructed trial functions are now able to produce continuous nodal gradients, smooth nodal stress without post-processing and higher order basis without increasing the total degrees of freedom. Several benchmark numerical examples are performed to investigate accuracy and efficiency of DFEM and enriched DFEM. When compared with standard FEM, super-convergence rate and better accuracy are obtained by DFEM. For the numerical simulation of crack propagation, better accuracy is obtained in the evaluation of displacement norm, energy norm and the stress intensity factor.
For the Hodge--Laplace equation in finite element exterior calculus, we introduce several families of discontinuous Galerkin methods in the extended Galerkin framework. For contractible domains, this framework utilizes seven fields and provides a uni
In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on ea
We introduce a new method for the numerical approximation of time-harmonic acoustic scattering problems stemming from material inhomogeneities. The method works for any frequency $omega$, but is especially efficient for high-frequency problems. It is
We develop a general framework for construction and analysis of discrete extension operators with application to unfitted finite element approximation of partial differential equations. In unfitted methods so called cut elements intersected by the bo
We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approxim