ترغب بنشر مسار تعليمي؟ اضغط هنا

Information-adaptive clinical trials with selective recruitment and binary outcomes

165   0   0.0 ( 0 )
 نشر من قبل James Barrett
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف James E. Barrett




اسأل ChatGPT حول البحث

Selective recruitment designs preferentially recruit individuals that are estimated to be statistically informative onto a clinical trial. Individuals that are expected to contribute less information have a lower probability of recruitment. Furthermore, in an information-adaptive design recruits are allocated to treatment arms in a manner that maximises information gain. The informativeness of an individual depends on their covariate (or biomarker) values and how information is defined is a critical element of information-adaptive designs. In this paper we define and evaluate four different methods for quantifying statistical information. Using both experimental data and numerical simulations we show that selective recruitment designs can offer a substantial increase in statistical power compared to randomised designs. In trials without selective recruitment we find that allocating individuals to treatment arms according to information-adaptive protocols also leads to an increase in statistical power. Consequently, selective recruitment designs can potentially achieve successful trials using fewer recruits thereby offering economic and ethical advantages.



قيم البحث

اقرأ أيضاً

496 - James E. Barrett 2015
We propose a novel adaptive design for clinical trials with time-to-event outcomes and covariates (which may consist of or include biomarkers). Our method is based on the expected entropy of the posterior distribution of a proportional hazards model. The expected entropy is evaluated as a function of a patients covariates, and the information gained due to a patient is defined as the decrease in the corresponding entropy. Candidate patients are only recruited onto the trial if they are likely to provide sufficient information. Patients with covariates that are deemed uninformative are filtered out. A special case is where all patients are recruited, and we determine the optimal treatment arm allocation. This adaptive design has the advantage of potentially elucidating the relationship between covariates, treatments, and survival probabilities using fewer patients, albeit at the cost of rejecting some candidates. We assess the performance of our adaptive design using data from the German Breast Cancer Study group and numerical simulations of a biomarker validation trial.
145 - Tinghui Yu 2015
The treatment effects of the same therapy observed from multiple clinical trials can often be very different. Yet the patient characteristics accounting for these differences may not be identifiable in real world practice. There needs to be an unbias ed way to combine the results from multiple trials and report the overall treatment effect for the general population during the development and validation of a new therapy. The non-linear structure of the maximum partial likelihood estimates for the (log) hazard ratio defined with a Cox proportional hazard model leads to challenges in the statistical analyses for combining such clinical trials. In this paper, we formulated the expected overall treatment effects using various modeling assumptions. Thus we are proposing efficient estimates and a version of Wald test for the combined hazard ratio using only aggregate data. Interpretation of the methods are provided in the framework of robust data analyses involving misspecified models.
This paper studies the generalization of the targeted minimum loss-based estimation (TMLE) framework to estimation of effects of time-varying interventions in settings where both interventions, covariates, and outcome can happen at subject-specific t ime-points on an arbitrarily fine time-scale. TMLE is a general template for constructing asymptotically linear substitution estimators for smooth low-dimensional parameters in infinite-dimensional models. Existing longitudinal TMLE methods are developed for data where observations are made on a discrete time-grid. We consider a continuous-time counting process model where intensity measures track the monitoring of subjects, and focus on a low-dimensional target parameter defined as the intervention-specific mean outcome at the end of follow-up. To construct our TMLE algorithm for the given statistical estimation problem we derive an expression for the efficient influence curve and represent the target parameter as a functional of intensities and conditional expectations. The high-dimensional nuisance parameters of our model are estimated and updated in an iterative manner according to separate targeting steps for the involved intensities and conditional expectations. The resulting estimator solves the efficient influence curve equation. We state a general efficiency theorem and describe a highly adaptive lasso estimator for nuisance parameters that allows us to establish asymptotic linearity and efficiency of our estimator under minimal conditions on the underlying statistical model.
Fields like public health, public policy, and social science often want to quantify the degree of dependence between variables whose relationships take on unknown functional forms. Typically, in fact, researchers in these fields are attempting to eva luate causal theories, and so want to quantify dependence after conditioning on other variables that might explain, mediate or confound causal relations. One reason conditional mutual information is not more widely used for these tasks is the lack of estimators which can handle combinations of continuous and discrete random variables, common in applications. This paper develops a new method for estimating mutual and conditional mutual information for data samples containing a mix of discrete and continuous variables. We prove that this estimator is consistent and show, via simulation, that it is more accurate than similar estimators.
Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we on ly have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا