ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotically optimal, sequential, multiple testing procedures with prior information on the number of signals

90   0   0.0 ( 0 )
 نشر من قبل Yanglei Song
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we only have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.



قيم البحث

اقرأ أيضاً

The sequential multiple testing problem is considered under two generalized error metrics. Under the first one, the probability of at least $k$ mistakes, of any kind, is controlled. Under the second, the probabilities of at least $k_1$ false positive s and at least $k_2$ false negatives are simultaneously controlled. For each formulation, the optimal expected sample size is characterized, to a first-order asymptotic approximation as the error probabilities go to 0, and a novel multiple testing procedure is proposed and shown to be asymptotically efficient under every signal configuration. These results are established when the data streams for the various hypotheses are independent and each local log-likelihood ratio statistic satisfies a certain Strong Law of Large Numbers. In the special case of i.i.d. observations in each stream, the gains of the proposed sequential procedures over fixed-sample size schemes are quantified.
We study an online multiple testing problem where the hypotheses arrive sequentially in a stream. The test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We investigate two procedures LORD and LOND, proposed by (Javanmard and Montanari, 2015), which are proved to control the FDR in an online manner. In some (static) model, we show that LORD is optimal in some asymptotic sense, in particular as powerful as the (static) Benjamini-Hochberg procedure to first asymptotic order. We also quantify the performance of LOND. Some numerical experiments complement our theory.
118 - Xinjia Chen 2013
A large class of problems in sciences and engineering can be formulated as the general problem of constructing random intervals with pre-specified coverage probabilities for the mean. Wee propose a general approach for statistical inference of mean v alues based on accumulated observational data. We show that the construction of such random intervals can be accomplished by comparing the endpoints of random intervals with confidence sequences for the mean. Asymptotic results are obtained for such sequential methods.
Statistical inference for sparse covariance matrices is crucial to reveal dependence structure of large multivariate data sets, but lacks scalable and theoretically supported Bayesian methods. In this paper, we propose beta-mixture shrinkage prior, c omputationally more efficient than the spike and slab prior, for sparse covariance matrices and establish its minimax optimality in high-dimensional settings. The proposed prior consists of beta-mixture shrinkage and gamma priors for off-diagonal and diagonal entries, respectively. To ensure positive definiteness of the resulting covariance matrix, we further restrict the support of the prior to a subspace of positive definite matrices. We obtain the posterior convergence rate of the induced posterior under the Frobenius norm and establish a minimax lower bound for sparse covariance matrices. The class of sparse covariance matrices for the minimax lower bound considered in this paper is controlled by the number of nonzero off-diagonal elements and has more intuitive appeal than those appeared in the literature. The obtained posterior convergence rate coincides with the minimax lower bound unless the true covariance matrix is extremely sparse. In the simulation study, we show that the proposed method is computationally more efficient than competitors, while achieving comparable performance. Advantages of the shrinkage prior are demonstrated based on two real data sets.
104 - Ray Bai , Malay Ghosh 2017
We study the well-known problem of estimating a sparse $n$-dimensional unknown mean vector $theta = (theta_1, ..., theta_n)$ with entries corrupted by Gaussian white noise. In the Bayesian framework, continuous shrinkage priors which can be expressed as scale-mixture normal densities are popular for obtaining sparse estimates of $theta$. In this article, we introduce a new fully Bayesian scale-mixture prior known as the inverse gamma-gamma (IGG) prior. We prove that the posterior distribution contracts around the true $theta$ at (near) minimax rate under very mild conditions. In the process, we prove that the sufficient conditions for minimax posterior contraction given by Van der Pas et al. (2016) are not necessary for optimal posterior contraction. We further show that the IGG posterior density concentrates at a rate faster than those of the horseshoe or the horseshoe+ in the Kullback-Leibler (K-L) sense. To classify true signals ($theta_i eq 0$), we also propose a hypothesis test based on thresholding the posterior mean. Taking the loss function to be the expected number of misclassified tests, we show that our test procedure asymptotically attains the optimal Bayes risk exactly. We illustrate through simulations and data analysis that the IGG has excellent finite sample performance for both estimation and classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا