ﻻ يوجد ملخص باللغة العربية
Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we only have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.
The sequential multiple testing problem is considered under two generalized error metrics. Under the first one, the probability of at least $k$ mistakes, of any kind, is controlled. Under the second, the probabilities of at least $k_1$ false positive
We study an online multiple testing problem where the hypotheses arrive sequentially in a stream. The test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We investigate two procedures LORD
A large class of problems in sciences and engineering can be formulated as the general problem of constructing random intervals with pre-specified coverage probabilities for the mean. Wee propose a general approach for statistical inference of mean v
Statistical inference for sparse covariance matrices is crucial to reveal dependence structure of large multivariate data sets, but lacks scalable and theoretically supported Bayesian methods. In this paper, we propose beta-mixture shrinkage prior, c
We study the well-known problem of estimating a sparse $n$-dimensional unknown mean vector $theta = (theta_1, ..., theta_n)$ with entries corrupted by Gaussian white noise. In the Bayesian framework, continuous shrinkage priors which can be expressed