ترغب بنشر مسار تعليمي؟ اضغط هنا

Information-adaptive clinical trials: a selective recruitment design

497   0   0.0 ( 0 )
 نشر من قبل James Barrett
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف James E. Barrett




اسأل ChatGPT حول البحث

We propose a novel adaptive design for clinical trials with time-to-event outcomes and covariates (which may consist of or include biomarkers). Our method is based on the expected entropy of the posterior distribution of a proportional hazards model. The expected entropy is evaluated as a function of a patients covariates, and the information gained due to a patient is defined as the decrease in the corresponding entropy. Candidate patients are only recruited onto the trial if they are likely to provide sufficient information. Patients with covariates that are deemed uninformative are filtered out. A special case is where all patients are recruited, and we determine the optimal treatment arm allocation. This adaptive design has the advantage of potentially elucidating the relationship between covariates, treatments, and survival probabilities using fewer patients, albeit at the cost of rejecting some candidates. We assess the performance of our adaptive design using data from the German Breast Cancer Study group and numerical simulations of a biomarker validation trial.



قيم البحث

اقرأ أيضاً

164 - James E. Barrett 2015
Selective recruitment designs preferentially recruit individuals that are estimated to be statistically informative onto a clinical trial. Individuals that are expected to contribute less information have a lower probability of recruitment. Furthermo re, in an information-adaptive design recruits are allocated to treatment arms in a manner that maximises information gain. The informativeness of an individual depends on their covariate (or biomarker) values and how information is defined is a critical element of information-adaptive designs. In this paper we define and evaluate four different methods for quantifying statistical information. Using both experimental data and numerical simulations we show that selective recruitment designs can offer a substantial increase in statistical power compared to randomised designs. In trials without selective recruitment we find that allocating individuals to treatment arms according to information-adaptive protocols also leads to an increase in statistical power. Consequently, selective recruitment designs can potentially achieve successful trials using fewer recruits thereby offering economic and ethical advantages.
A central goal in designing clinical trials is to find the test that maximizes power (or equivalently minimizes required sample size) for finding a true research hypothesis subject to the constraint of type I error. When there is more than one test, such as in clinical trials with multiple endpoints, the issues of optimal design and optimal policies become more complex. In this paper we address the question of how such optimal tests should be defined and how they can be found. We review different notions of power and how they relate to study goals, and also consider the requirements of type I error control and the nature of the policies. This leads us to formulate the optimal policy problem as an explicit optimization problem with objective and constraints which describe its specific desiderata. We describe a complete solution for deriving optimal policies for two hypotheses, which have desired monotonicity properties, and are computationally simple. For some of the optimization formulations this yields optimal policies that are identical to existing policies, such as Hommels procedure or the procedure of Bittman et al. (2009), while for others it yields completely novel and more powerful policies than existing ones. We demonstrate the nature of our novel policies and their improved power extensively in simulation and on the APEX study (Cohen et al., 2016).
287 - Li Yang , Wei Ma , Yichen Qin 2020
Concerns have been expressed over the validity of statistical inference under covariate-adaptive randomization despite the extensive use in clinical trials. In the literature, the inferential properties under covariate-adaptive randomization have bee n mainly studied for continuous responses; in particular, it is well known that the usual two sample t-test for treatment effect is typically conservative, in the sense that the actual test size is smaller than the nominal level. This phenomenon of invalid tests has also been found for generalized linear models without adjusting for the covariates and are sometimes more worrisome due to inflated Type I error. The purpose of this study is to examine the unadjusted test for treatment effect under generalized linear models and covariate-adaptive randomization. For a large class of covariate-adaptive randomization methods, we obtain the asymptotic distribution of the test statistic under the null hypothesis and derive the conditions under which the test is conservative, valid, or anti-conservative. Several commonly used generalized linear models, such as logistic regression and Poisson regression, are discussed in detail. An adjustment method is also proposed to achieve a valid size based on the asymptotic results. Numerical studies confirm the theoretical findings and demonstrate the effectiveness of the proposed adjustment method.
Detection of interactions between treatment effects and patient descriptors in clinical trials is critical for optimizing the drug development process. The increasing volume of data accumulated in clinical trials provides a unique opportunity to disc over new biomarkers and further the goal of personalized medicine, but it also requires innovative robust biomarker detection methods capable of detecting non-linear, and sometimes weak, signals. We propose a set of novel univariate statistical tests, based on the theory of random walks, which are able to capture non-linear and non-monotonic covariate-treatment interactions. We also propose a novel combined test, which leverages the power of all of our proposed univariate tests into a single general-case tool. We present results for both synthetic trials as well as real-world clinical trials, where we compare our method with state-of-the-art techniques and demonstrate the utility and robustness of our approach.
Suppose an online platform wants to compare a treatment and control policy, e.g., two different matching algorithms in a ridesharing system, or two different inventory management algorithms in an online retail site. Standard randomized controlled tri als are typically not feasible, since the goal is to estimate policy performance on the entire system. Instead, the typical current practice involves dynamically alternating between the two policies for fixed lengths of time, and comparing the average performance of each over the intervals in which they were run as an estimate of the treatment effect. However, this approach suffers from *temporal interference*: one algorithm alters the state of the system as seen by the second algorithm, biasing estimates of the treatment effect. Further, the simple non-adaptive nature of such designs implies they are not sample efficient. We develop a benchmark theoretical model in which to study optimal experimental design for this setting. We view testing the two policies as the problem of estimating the steady state difference in reward between two unknown Markov chains (i.e., policies). We assume estimation of the steady state reward for each chain proceeds via nonparametric maximum likelihood, and search for consistent (i.e., asymptotically unbiased) experimental designs that are efficient (i.e., asymptotically minimum variance). Characterizing such designs is equivalent to a Markov decision problem with a minimum variance objective; such problems generally do not admit tractable solutions. Remarkably, in our setting, using a novel application of classical martingale analysis of Markov chains via Poissons equation, we characterize efficient designs via a succinct convex optimization problem. We use this characterization to propose a consistent, efficient online experimental design that adaptively samples the two Markov chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا