ﻻ يوجد ملخص باللغة العربية
Double-dot exchange-only qubit represents a promising compromise between high speed and simple fabrication in solid-state implementations. A couple of interacting double-dot exchange-only qubits, each composed by three electrons distributed in a double quantum dot, is exploited to realize controlled-NOT (CNOT) operations. The effective Hamiltonian model of the composite system is expressed by only exchange interactions between pairs of spins. Consequently, the evolution operator has a simple form and represents the starting point for the research of sequences of operations that realize CNOT gates. Two different geometrical configurations of the pair are considered, and a numerical mixed simplex and genetic algorithm is used. We compare the nonphysical case in which all the interactions are controllable from the external and the realistic condition in which intra-dot interactions are fixed by the geometry of the system. In the latter case, we find the CNOT sequences for both the geometrical configurations and we considered a qubit system where electrons are electrostatically confined in two quantum dots in a silicon nanowire. The effects of the geometrical sizes of the nanowire and of the gates on the fundamental parameters controlling the qubit are studied by exploiting a spin-density-functional theory-based simulator. Consequently, CNOT gate performances are evaluated.
Quantum dot hybrid qubits formed from three electrons in double quantum dots represent a promising compromise between high speed and simple fabrication for solid state implementations of single qubit and two qubits quantum logic ports. We derive the
We extend recent work on a leakage-protected, adiabatic entangling gate for exchange-only spin qubits [Doherty and Wardrop, PRL 111, 050503 (2013)] by adapting to a setting where single spins are not assumed to be polarized on preparation. Previous g
We introduce an always-on, exchange-only qubit made up of three localized semiconductor spins that offers a true sweet spot to fluctuations of the quantum dot energy levels. Both single- and two-qubit gate operations can be performed using only excha
We propose and experimentally demonstrate a scheme for implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before an
Universal quantum computing relies on high-fidelity entangling operations. Here we demonstrate that four coupled qubits can operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration