ﻻ يوجد ملخص باللغة العربية
Quantum dot hybrid qubits formed from three electrons in double quantum dots represent a promising compromise between high speed and simple fabrication for solid state implementations of single qubit and two qubits quantum logic ports. We derive the Schrieffer-Wolff effective Hamiltonian that describes in a simple and intuitive way the qubit by combining a Hubbard-like model with a projector operator method. As a result, the Hubbard-like Hamiltonian is transformed in an equivalent expression in terms of the exchange coupling interactions between pairs of electrons. The effective Hamiltonian is exploited to derive the dynamical behaviour of the system and its eigenstates on the Bloch sphere to generate qubits operation for quantum logic ports. A realistic implementation in silicon and the coupling of the qubit with a detector are discussed.
We report a single-shot-based projective readout of a semiconductor hybrid qubit formed by three electrons in a GaAs double quantum dot. Voltage-controlled adiabatic transitions between the qubit operations and readout conditions allow high-fidelity
A scheme based on Coherent Tunneling by Adiabatic Passage (CTAP) of exchange-only spin qubit quantum states in a linearly arranged double quantum dot chain is demonstrated. Logical states for the qubit are defined by adopting the spin state of three
Precise nanofabrication represents a critical challenge to developing semiconductor quantum-dot qubits for practical quantum computation. Here, we design and train a convolutional neural network to interpret in-line scanning electron micrographs and
Electron spins in Si are an attractive platform for quantum computation, backed with their scalability and fast, high-fidelity quantum logic gates. Despite the importance of two-dimensional integration with efficient connectivity between qubits for m
We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD). Our model describes a DQD formed in semiconductor nanowire with longitudinal potential modulated by local gating. The