ﻻ يوجد ملخص باللغة العربية
Universal quantum computing relies on high-fidelity entangling operations. Here we demonstrate that four coupled qubits can operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration can implement four different controlled two-qubit gates: two different entangling swap and phase operations, a phase operation distinguishing states of different parity, and the identity operation (idle quantum gate), where the choice of gate is set by the state of the control qubits. The device exploits quantum interference to control the operation on the target qubits by coupling them to each other via the control qubits. By connecting several four-qubit devices in a two-dimensional lattice, one can achieve a highly connected quantum computer. We consider an implementation of the four-qubit gate with superconducting qubits, using capacitively coupled qubits arranged in a diamond-shaped architecture.
We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The~corresponding quantum dynamics is exactly treated and manifests the appearance and disapp
Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to
Engineering quantum operations is one of the main abilities we need for developing quantum technologies and designing new fundamental tests. Here we propose a scheme for realising a controlled operation acting on a travelling quantum field, whose fun
We propose $mathrm{SQiSW}$, the matrix square root of the standard $mathrm{iSWAP}$ gate, as a native two-qubit gate for superconducting quantum computing. We show numerically that it has potential for an ultra-high fidelity implementation as its gate
Bipartite operations underpin both classical communication and entanglement generation. Using a superposition of classical messages, we show that the capacity of a two-qubit operation for error-free entanglement-assisted bidirectional classical commu