ﻻ يوجد ملخص باللغة العربية
We introduce an always-on, exchange-only qubit made up of three localized semiconductor spins that offers a true sweet spot to fluctuations of the quantum dot energy levels. Both single- and two-qubit gate operations can be performed using only exchange pulses while maintaining this sweet spot. We show how to interconvert this qubit to other three-spin encoded qubits as a new resource for quantum computation and communication.
We present a scheme for correcting for crosstalk- and noise-induced errors in exchange-coupled singlet-triplet semiconductor double quantum dot qubits. While exchange coupling allows the coupling strength to be controlled independently of the intraqu
Resonant exchange qubits are a promising addition to the family of experimentally implemented encodings of single qubits using semiconductor quantum dots. We have shown previously that it ought to be straightforward to perform a CPHASE gate between t
Optimal working points or sweet spots have arisen as an important tool for mitigating charge noise in quantum dot logical spin qubits. The exchange-only qubit provides an ideal system for studying this effect because $Z$ rotations are performed direc
Spin-based silicon quantum dots are an attractive qubit technology for quantum information processing with respect to coherence time, control, and engineering. Here we present an exchange-only Si qubit device platform that combines the throughput of
Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable platform. Silicon spin qubits are a promising platform toward realization of this goal. In this paper we show how to perform single-qubit and CZ gates in a line