ﻻ يوجد ملخص باللغة العربية
The square root rank of a nonnegative matrix $A$ is the minimum rank of a matrix $B$ such that $A=B circ B$, where $circ$ denotes entrywise product. We show that the square root rank of the slack matrix of the correlation polytope is exponential. Our main technique is a way to lower bound the rank of certain matrices under arbitrary sign changes of the entries using properties of the roots of polynomials in number fields. The square root rank is an upper bound on the positive semidefinite rank of a matrix, and corresponds the special case where all matrices in the factorization are rank-one.
We define the Augmentation property for binary matrices with respect to different rank functions. A matrix $A$ has the Augmentation property for a given rank function, if for any subset of column vectors $x_1,...,x_t$ for for which the rank of $A$ do
We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on $n$-vertex graphs are not the linear image
The problem of tolerant junta testing is a natural and challenging problem which asks if the property of a function having some specified correlation with a $k$-Junta is testable. In this paper we give an affirmative answer to this question: We show
Say that A is a Hadamard factorization of the identity I_n of size n if the entrywise product of A and the transpose of A is I_n. It can be easily seen that the rank of any Hadamard factorization of the identity must be at least sqrt{n}. Dietzfelbing
We prove that for every $n$-vertex graph $G$, the extension complexity of the correlation polytope of $G$ is $2^{O(mathrm{tw}(G) + log n)}$, where $mathrm{tw}(G)$ is the treewidth of $G$. Our main result is that this bound is tight for graphs contained in minor-closed classes.