ﻻ يوجد ملخص باللغة العربية
We define the Augmentation property for binary matrices with respect to different rank functions. A matrix $A$ has the Augmentation property for a given rank function, if for any subset of column vectors $x_1,...,x_t$ for for which the rank of $A$ does not increase when augmented separately with each of the vectors $x_i$, $1leq i leq t$, it also holds that the rank does not increase when augmenting $A$ with all vectors $x_1,...,x_t$ simultaneously. This property holds trivially for the usual linear rank over the reals, but as we show, things change significantly when considering the binary and boolean rank of a matrix. We prove a necessary and sufficient condition for this property to hold under the binary and boolean rank of binary matrices. Namely, a matrix has the Augmentation property for these rank functions if and only if it has a unique base that spans all other bases of the matrix with respect to the given rank function. For the binary rank, we also present a concrete characterization of a family of matrices that has the Augmentation property. This characterization is based on the possible types of linear dependencies between rows of $V$, in optimal binary decompositions of the matrix as $A=Ucdot V$. Furthermore, we use the Augmentation property to construct simple families of matrices, for which there is a gap between their real and binary rank and between their real and boolean rank.
We present algorithms for testing if a $(0,1)$-matrix $M$ has Boolean/binary rank at most $d$, or is $epsilon$-far from Boolean/binary rank $d$ (i.e., at least an $epsilon$-fraction of the entries in $M$ must be modified so that it has rank at most $
Let $f: {0,1}^n to {0, 1}$ be a boolean function, and let $f_land (x, y) = f(x land y)$ denote the AND-function of $f$, where $x land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_land$ and show that, up to a $log
Obtaining superlinear lower bounds on tensor rank is a major open problem in complexity theory. In this paper we propose a generalization of the approach used by Strassen in the proof of his 3n/2 border rank lower bound. Our approach revolves around
The square root rank of a nonnegative matrix $A$ is the minimum rank of a matrix $B$ such that $A=B circ B$, where $circ$ denotes entrywise product. We show that the square root rank of the slack matrix of the correlation polytope is exponential. Our
We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this defin