ﻻ يوجد ملخص باللغة العربية
We prove that for every $n$-vertex graph $G$, the extension complexity of the correlation polytope of $G$ is $2^{O(mathrm{tw}(G) + log n)}$, where $mathrm{tw}(G)$ is the treewidth of $G$. Our main result is that this bound is tight for graphs contained in minor-closed classes.
In the study of extensions of polytopes of combinatorial optimization problems, a notorious open question is that for the size of the smallest extended formulation of the Minimum Spanning Tree problem on a complete graph with $n$ nodes. The best know
We study the dynamic and complexity of the generalized Q2R automaton. We show the existence of non-polynomial cycles as well as its capability to simulate with the synchronous update the classical version of the automaton updated under a block sequen
Correspondence homomorphisms are both a generalization of standard homomorphisms and a generalization of correspondence colourings. For a fixed target graph $H$, the problem is to decide whether an input graph $G$, with each edge labeled by a pair of
Let $G$ be a graph such that each edge has its list of available colors, and assume that each list is a subset of the common set consisting of $k$ colors. Suppose that we are given two list edge-colorings $f_0$ and $f_r$ of $G$, and asked whether the
The extension complexity $mathsf{xc}(P)$ of a polytope $P$ is the minimum number of facets of a polytope that affinely projects to $P$. Let $G$ be a bipartite graph with $n$ vertices, $m$ edges, and no isolated vertices. Let $mathsf{STAB}(G)$ be the