ﻻ يوجد ملخص باللغة العربية
The problem of tolerant junta testing is a natural and challenging problem which asks if the property of a function having some specified correlation with a $k$-Junta is testable. In this paper we give an affirmative answer to this question: We show that given distance parameters $frac{1}{2} >c_u>c_{ell} ge 0$, there is a tester which given oracle access to $f:{-1,1}^n rightarrow {-1,1}$, with query complexity $ 2^k cdot mathsf{poly}(k,1/|c_u-c_{ell}|)$ and distinguishes between the following cases: $mathbf{1.}$ The distance of $f$ from any $k$-junta is at least $c_u$; $mathbf{2.}$ There is a $k$-junta $g$ which has distance at most $c_ell$ from $f$. This is the first non-trivial tester (i.e., query complexity is independent of $n$) which works for all $1/2 > c_u > c_ell ge 0$. The best previously known results by Blais emph{et~ al.}, required $c_u ge 16 c_ell$. In fact, with the same query complexity, we accomplish the stronger goal of identifying the most correlated $k$-junta, up to permutations of the coordinates. We can further improve the query complexity to $mathsf{poly}(k, 1/|c_u-c_{ell}|)$ for the (weaker) task of distinguishing between the following cases: $mathbf{1.}$ The distance of $f$ from any $k$-junta is at least $c_u$. $mathbf{2.}$ There is a $k$-junta $g$ which is at a distance at most $c_ell$ from $f$. Here $k=O(k^2/|c_u-c_ell|)$. Our main tools are Fourier analysis based algorithms that simulate oracle access to influential coordinates of functions.
We present an algorithm for strongly refuting smoothed instances of all Boolean CSPs. The smoothed model is a hybrid between worst and average-case input models, where the input is an arbitrary instance of the CSP with only the negation patterns of t
The square root rank of a nonnegative matrix $A$ is the minimum rank of a matrix $B$ such that $A=B circ B$, where $circ$ denotes entrywise product. We show that the square root rank of the slack matrix of the correlation polytope is exponential. Our
Let $mathcal{F}_{n}^*$ be the set of Boolean functions depending on all $n$ variables. We prove that for any $fin mathcal{F}_{n}^*$, $f|_{x_i=0}$ or $f|_{x_i=1}$ depends on the remaining $n-1$ variables, for some variable $x_i$. This existent result
We study property testing of (di)graph properties in bounded-degree graph models. The study of graph properties in bounded-degree models is one of the focal directions of research in property testing in the last 15 years. However, despite of the many
In the Nikoli pencil-and-paper game Tatamibari, a puzzle consists of an $m times n$ grid of cells, where each cell possibly contains a clue among +, -, |. The goal is to partition the grid into disjoint rectangles, where every rectangle contains exac