ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene-Passivated Nickel as an Oxidation-Resistant Electrode for Spintronics

134   0   0.0 ( 0 )
 نشر من قبل Pierre Seneor
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapour deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrates that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.



قيم البحث

اقرأ أيضاً

Because of its fascinating electronic properties, graphene is expected to produce breakthroughs in many areas of nanoelectronics. For spintronics, its key advantage is the expected long spin lifetime, combined with its large electron velocity. In thi s article, we review recent theoretical and experimental results showing that graphene could be the long-awaited platform for spintronics. A critical parameter for both characterization and devices is the resistance of the contact between the electrodes and the graphene, which must be large enough to prevent quenching of the induced spin polarization but small enough to allow for the detection of this polarization. Spin diffusion lengths in the 100-{mu}m range, much longer than those in conventional metals and semiconductors, have been observed. This could be a unique advantage for several concepts of spintronic devices, particularly for the implementation of complex architectures or logic circuits in which information is coded by pure spin currents.
Detection and manipulation of electrons spins are key prerequisites for spin-based electronics or spintronics. This is usually achieved by contacting ferromagnets with metals or semiconductors, in which the relaxation of spins due to spin-orbit coupl ing limits both the efficiency and the length scale. In topological insulator materials, on the contrary, the spin-orbit coupling is so strong that the spin direction uniquely determines the current direction, which allows us to conceive a whole new scheme for spin detection and manipulation. Nevertheless, even the most basic process, the spin injection into a topological insulator from a ferromagnet, has not yet been demonstrated. Here we report successful spin injection into the surface states of topological insulators by using a spin pumping technique. By measuring the voltage that shows up across the samples as a result of spin pumping, we demonstrate that a spin-electricity conversion effect takes place in the surface states of bulk-insulating topological insulators Bi1.5Sb0.5Te1.7Se1.3 and Sn-doped Bi2Te2Se. In this process, due to the two-dimensional nature of the surface state, there is no spin current along the perpendicular direction. Hence, the mechanism of this phenomenon is different from the inverse spin Hall effect and even predicts perfect conversion between spin and electricity at room temperature. The present results reveal a great advantage of topological insulators as inborn spintronics devices.
Three typical one-dimensional (1D)/quasi-1D nanocarbons, linear carbon chains, carbon nanotubes, and graphene nanoribbons have been proven to grow inside single-wall carbon nanotubes. This gives rise to three types of hybrid materials whose behaviour and properties compared among each other are far from understood. After proving successful the synthesis of these nanostructured materials in recently published work, we have now been able to study their oxidation stability systematically by using resonance Raman spectroscopy. Surprisingly, the linear carbon chains, which have been theoretically predicted to be very unstable, are actually thermally stable up to 500 {deg}C assisted by the protection of the carbon nanotube hosts. Besides, longer linear carbon chains inside narrower CNTs are more stable than the shorter ones inside larger tubes, suggesting that the thermal stability not only depends on the length of linear carbon chains alone, but it is correlated with the confinement of the host tubes in a more complicated manner. In addition, graphene nanoribbons come overall in view as the most stable confined structures. On the other hand, peculiarities like the higher stability of the (6,5) CNT over its (6,4) counterpart allow this study to provide a solid platform for further studies on the application of these 1D nanocarbons (including true 1D linear carbon chains) at ambient conditions.
Nano-thick metallic transition metal dichalcogenides such as VS$_{2}$ are essential building blocks for constructing next-generation electronic and energy-storage applications, as well as for exploring unique physical issues associated with the dimen sionality effect. However, such 2D layered materials have yet to be achieved through either mechanical exfoliation or bottom-up synthesis. Herein, we report a facile chemical vapor deposition route for direct production of crystalline VS$_{2}$ nanosheets with sub-10 nm thicknesses and domain sizes of tens of micrometers. The obtained nanosheets feature spontaneous superlattice periodicities and excellent electrical conductivities (~3$times$10$^{3}$ S cm$^{-1}$), which has enabled a variety of applications such as contact electrodes for monolayer MoS$_{2}$ with contact resistances of ~1/4 to that of Ni/Au metals, and as supercapacitor electrodes in aqueous electrolytes showing specific capacitances as high as 8.6$times$10$^{2}$ F g$^{-1}$. This work provides fresh insights into the delicate structure-property relationship and the broad application prospects of such metallic 2D materials.
Bi2Se3 is a topological insulator with metallic surface states residing in a large bulk bandgap. It is believed that Bi2Se3 gets additional n-type doping after exposure to atmosphere, thereby reducing the relative contribution of surface states in to tal conductivity. In this letter, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological surface states. Appropriate surface passivation or encapsulation may be required to probe topological surface states of Bi2Se3 by transport measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا