ﻻ يوجد ملخص باللغة العربية
We revisit the discrete additive and multiplicative coalescents, starting with $n$ particles with unit mass. These cases are known to be related to some combinatorial coalescent processes: a time reversal of a fragmentation of Cayley trees or a parking scheme in the additive case, and the random graph process $(G(n,p))_p$ in the multiplicative case. Time being fixed, encoding these combinatorial objects in real-valued processes indexed by the line is the key to describing the asymptotic behaviour of the masses as $nto +infty$. We propose to use the Prim order on the vertices instead of the classical breadth-first (or depth-first) traversal to encode the combinatorial coalescent processes. In the additive case, this yields interesting connections between the different representations of the process. In the multiplicative case, it allows one to answer to a stronger version of an open question of Aldous [Ann. Probab., vol. 25, pp. 812--854, 1997]: we prove that not only the sequence of (rescaled) masses, seen as a process indexed by the time $lambda$, converges in distribution to the reordered sequence of lengths of the excursions above the current minimum of a Brownian motion with parabolic drift $(B_t+lambda t - t^2/2, tgeq 0)$, but we also construct a version of the standard augmented multiplicative coalescent of Bhamidi, Budhiraja and Wang [Probab. Theory Rel., to appear] using an additional Poisson point process.
We consider a natural model of inhomogeneous random graphs that extends the classical ErdH os-Renyi graphs and shares a close connection with the multiplicative coalescence, as pointed out by Aldous [AOP 1997]. In this model, the vertices are assigne
In this paper we show the existence of the minimal solution to the multidimensional Lambert-Euler inversion, a multidimensional generalization of $[-e^{-1} ,0)$ branch of Lambert W function $W_0(x)$. Specifically, for a given nonnegative irreducible
We analyse an additive-increase and multiplicative-decrease (aka growth-collapse) process that grows linearly in time and that experiences downward jumps at Poisson epochs that are (deterministically) proportional to its present position. This proces
This paper studies the spatial coalescent on $Z^2$. In our setting, the partition elements are located at the sites of $Z^2$ and undergo local delayed coalescence and migration. That is, pairs of partition elements located at the same site coalesce i
We study sets of recurrence, in both measurable and topological settings, for actions of $(mathbb{N},times)$ and $(mathbb{Q}^{>0},times)$. In particular, we show that autocorrelation sequences of positive functions arising from multiplicative systems