ﻻ يوجد ملخص باللغة العربية
This paper studies the spatial coalescent on $Z^2$. In our setting, the partition elements are located at the sites of $Z^2$ and undergo local delayed coalescence and migration. That is, pairs of partition elements located at the same site coalesce into one partition element after exponential waiting times. In addition, the partition elements perform independent random walks. The system starts in either locally finite configurations or in configurations containing countably many partition elements per site. These two situations are relevant if the coalescent is used to study the scaling limits for genealogies in Moran models respectively interacting Fisher-Wright diffusions (or Fleming-Viot processes), which is the key application of the present work. Our goal is to determine the longtime behavior with an initial population of countably many individuals per site restricted to a box $[-t^{alpha/2}, t^{alpha/2}]^2 cap Z^2$ and observed at time $t^beta$ with $1 geq beta geq alphage 0$. We study both asymptotics, as $ttoinfty$, for a fixed value of $alpha$ as the parameter $betain[alpha,1]$ varies, and for a fixed $beta$, as the parameter $alphain [0,beta]$ varies. This exhibits the genealogical structure of the mono-type clusters arising in 2-dimensional Moran and Fisher-Wright systems. (... for more see the actual preprint)
We revisit the discrete additive and multiplicative coalescents, starting with $n$ particles with unit mass. These cases are known to be related to some combinatorial coalescent processes: a time reversal of a fragmentation of Cayley trees or a parki
We introduce and solve a new type of quadratic backward stochastic differential equation systems defined in an infinite time horizon, called emph{ergodic BSDE systems}. Such systems arise naturally as candidate solutions to characterize forward perfo
We consider a one-dimensional, weakly asymmetric, boundary driven exclusion process on the interval $[0,N]cap Z$ in the super-diffusive time scale $N^2 epsilon^{-1}_N$, where $1ll epsilon^{-1}_N ll N^{1/4}$. We assume that the external field and the
We consider the population genetics problem: how long does it take before some member of the population has $m$ specified mutations? The case $m=2$ is relevant to onset of cancer due to the inactivation of both copies of a tumor suppressor gene. Mode
Full likelihood inference under Kingmans coalescent is a computationally challenging problem to which importance sampling (IS) and the product of approximate conditionals (PAC) method have been applied successfully. Both methods can be expressed in t