ﻻ يوجد ملخص باللغة العربية
We consider a natural model of inhomogeneous random graphs that extends the classical ErdH os-Renyi graphs and shares a close connection with the multiplicative coalescence, as pointed out by Aldous [AOP 1997]. In this model, the vertices are assigned weights that govern their tendency to form edges. It is by looking at the asymptotic distributions of the masses (sum of the weights) of the connected components of these graphs that Aldous and Limic [EJP 1998] have identified the entrance boundary of the multiplicative coalescence, which is intimately related to the excursion lengths of certain Levy-type processes. We, instead, look at the metric structure of these components and prove their Gromov-Hausdorff-Prokhorov convergence to a class of random compact measured metric spaces that have been introduced in a companion paper. Our asymptotic regimes relate directly to the general convergence condition appearing in the work of Aldous and Limic. Our techniques provide a unified approach for this general critical regime, and relies upon two key ingredients: an encoding of the graph by some Levy process as well as an embedding of its connected components into Galton-Watson forests. This embedding transfers asymptotically into an embedding of the limit objects into a forest of Levy trees, which allows us to give an explicit construction of the limit objects from the excursions of the Levy-type process. The mains results combined with the ones in the other paper allow us to extend and complement several previous results that had been obtained via regime-specific proofs, for instance: the case of ErdH os-Renyi random graphs obtained by Addario-Berry, Goldschmidt and B. [PTRF 2012], the asymptotic homogeneous case as studied by Bhamidi, Sen and Wang [PTRF 2017], or the power-law case as considered by Bhamidi, Sen and van der Hofstad [PTRF 2018].
Motivated by limits of critical inhomogeneous random graphs, we construct a family of sequences of measured metric spaces that we call continuous multiplicative graphs, that are expected to be the universal limit of graphs related to the multiplicati
Consider a set of $n$ vertices, where each vertex has a location in $mathbb{R}^d$ that is sampled uniformly from the unit cube in $mathbb{R}^d$, and a weight associated to it. Construct a random graph by placing edges independently for each vertex pa
There have been several recent articles studying homology of various types of random simplicial complexes. Several theorems have concerned thresholds for vanishing of homology, and in some cases expectations of the Betti numbers. However little seems
We correct the proofs of the main theorems in our paper Limit theorems for Betti numbers of random simplicial complexes.
We consider bootstrap percolation and diffusion in sparse random graphs with fixed degrees, constructed by configuration model. Every node has two states: it is either active or inactive. We assume that to each node is assigned a nonnegative (integer