ترغب بنشر مسار تعليمي؟ اضغط هنا

Additive averages of multiplicative correlation sequences and applications

185   0   0.0 ( 0 )
 نشر من قبل Sebasti\\'an Donoso
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study sets of recurrence, in both measurable and topological settings, for actions of $(mathbb{N},times)$ and $(mathbb{Q}^{>0},times)$. In particular, we show that autocorrelation sequences of positive functions arising from multiplicative systems have positive additive averages. We also give criteria for when sets of the form ${(an+b)^{ell}/(cn+d)^{ell}: n in mathbb{N}}$ are sets of multiplicative recurrence, and consequently we recover two recent results in number theory regarding completely multiplicative functions and the Omega function.



قيم البحث

اقرأ أيضاً

It is shown that in a class of counterexamples to Elliotts conjecture by Matomaki, Radziwill and Tao, the Chowla conjecture holds along a subsequence.
This paper is aimed at a detailed study of the multifractal analysis of the so-called divergence points in the system of $beta$-expansions. More precisely, let $([0,1),T_{beta})$ be the $beta$-dynamical system for a general $beta>1$ and $psi:[0,1]map stomathbb{R}$ be a continuous function. Denote by $textsf{A}(psi,x)$ all the accumulation points of $Big{frac{1}{n}sum_{j=0}^{n-1}psi(T^jx): nge 1Big}$. The Hausdorff dimensions of the sets $$Big{x:textsf{A}(psi,x)supset[a,b]Big}, Big{x:textsf{A}(psi,x)=[a,b]Big}, Big{x:textsf{A}(psi,x)subset[a,b]Big}$$ i.e., the points for which the Birkhoff averages of $psi$ do not exist but behave in a certain prescribed way, are determined completely for any continuous function $psi$.
We show that Sarnaks conjecture on Mobius disjointness holds in every uniquely ergodic modelof a quasi-discrete spectrum automorphism. A consequence of this result is that, for each non constant polynomial $PinR[x]$ with irrational leading coefficien t and for each multiplicative function $bnu:NtoC$, $|bnu|leq1$, we have[ frac{1}{M} sum_{Mle mtextless{}2M} frac{1}{H} left| sum_{mle n textless{} m+H} e^{2pi iP(n)}bnu(n) right|longrightarrow 0 ] as $Mtoinfty$, $Htoinfty$, $H/Mto 0$.
Exploiting the recent work of Tao and Ziegler on the concatenation theorem on factors, we find explicit characteristic factors for multiple averages along polynomials on systems with commuting transformations, and use them to study the criteria of jo int ergodicity for sequences of the form $(T^{p_{1,j}(n)}_{1}cdotldotscdot T^{p_{d,j}(n)}_{d})_{ninmathbb{Z}},$ $1leq jleq k$, where $T_{1},dots,T_{d}$ are commuting measure preserving transformations on a probability measure space and $p_{i,j}$ are integer polynomials. To be more precise, we provide a sufficient condition for such sequences to be jointly ergodic. We also give a characterization for sequences of the form $(T^{p(n)}_{i})_{ninmathbb{Z}}, 1leq ileq d$ to be jointly ergodic, answering a question due to Bergelson.
Let $K$ be an algebraically closed field of characteristic 0 that is complete with respect to a non-archimedean absolute value. We establish a locally uniform approximation formula of the Lyapunov exponent of a rational map $f$ of $mathbb{P}^1$ of de gree $d>1$ over $K$, in terms of the multipliers of $n$-periodic points of $f$, with an explicit control in terms of $n$, $f$ and $K$. As an immediate consequence, we obtain an estimate for the blow-up of the Lyapunov exponent near a pole in one-dimensional families of rational maps over $K$. Combined with our former archimedean version, this non-archimedean quantitative approximation allows us to show: - a quantified version of Silvermans and Ingrams recent comparison between the critical height and any ample height on the moduli space $mathcal{M}_d(bar{mathbb{Q}})$, - two improvements of McMullens finiteness of the multiplier maps: reduction to multipliers of cycles of exact given period and an effective bound from below on the period, - a characterization of non-affine isotrivial rational maps defined over the function field $mathbb{C}(X)$ of a normal projective variety $X$ in terms of the growth of the degree of the multipliers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا