ترغب بنشر مسار تعليمي؟ اضغط هنا

Permanent magnet with MgB2 bulk superconductor

305   0   0.0 ( 0 )
 نشر من قبل Akiyasu Yamamoto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened research into high-temperature superconductors (HTSs) materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.



قيم البحث

اقرأ أيضاً

We have developed disk-shaped MgB2 bulk superconducting magnets (20, 30 mm in diameter, 10 mm in thickness) using the in-situ process from Mg and B powders and evaluated the temperature dependence of trapped magnetic field. A pair of two disc-shaped bulks of 30 mm in diameter and 10 mm in thickness magnetized by field-cooling condition showed trapped fields of 1.2, 2.8 and 3.1 T at 30, 20 and 17.5 K, respectively. High trapped field over 3 T was recorded for the first time.
We report the effect of adipic acid (C6H10O4) doping on lattice parameters, microstructure, critical temperature (Tc), current density (Jc), and irreversibility field (Hirr) for MgB2 superconductor. Actual carbon (C) substitution level for boron (B) is estimated to be from 0.40 percent to 2.95 percent for different doping levels. A reduction in Tc from 38.43 to 34.93 K and in lattice parameter a from 3.084(3) A to 3.075(6) Ais observed for the10 wt percent C6H10O4 doped sample in comparison to pristine MgB2. This is an indication of C substitution at boron sites, with the C coming from the decomposition of C6H10O4 at the time of reaction. Interestingly the doped samples have resulted in significant enhancement of Jc and Hirr. All the doped samples exhibit the Jc value of the order of 10^4 A/cm2 at 5 K and 8 T, which is higher by an order of magnitude as compared to undoped sample. This result indicates that C6H10O4 is a promising material for MgB2 for obtaining the excellent Jc values under higher magnetic fields.
119 - S. O. Valenzuela , G. A. Jorge , 1999
Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic intera ction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.
We report synthesis, structure/micro-structure, resistivity under magnetic field [R(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity K(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3-4nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2K by magnetic susceptibility C(T), resistivity R(T), thermoelectric power S(T), and thermal conductivity K(T) measurements. The power law fitting of R(T) give rise to Debye temperature at 1400K which is found consistent with the theoretical fitting of S(T), exhibiting ThetaD of 1410K and carrier density of 3.81x 1028/m3. Thermal conductivity K(T) shows a jump at 38K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1-2T (Tesla) fields at temperatures (T) of up to 10K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-Diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.
Multi-layered materials provide fascinating platforms to realize various functional properties, possibly leading to future electronic devices controlled by external fields. In particular, layered magnets coupled with conducting layers have been exten sively studied recently for possible control of their transport properties via the spin structure. Successful control of quantum-transport properties in the materials with antiferromagnetic (AFM) layers, so-called natural spin-valve structure, has been reported for the Dirac Fermion and topological/axion materials. However, a bulk crystal in which magnetic and superconducting layers are alternately stacked has not been realized until now, and the search for functional properties in it is an interesting yet unexplored field in material science. Here, we discover superconductivity providing such an ideal platform in EuSn2As2 with the van der Waals stacking of magnetic Eu layers and superconducting Sn-As layers, and present the first demonstration of a natural spin-valve effect on the superconducting current. Below the superconducting transition temperature (Tc), the electrical resistivity becomes zero in the in-plane direction. In contrast, it, surprisingly, remains finite down to the lowest temperature in the out-of-plane direction, mostly due to the structure of intrinsic magnetic Josephson junctions in EuSn2As2. The magnetic order of the Eu layers (or natural spin-valve) is observed to be extremely soft, allowing one to easy control of the out-of-plane to in-plane resistivities ratio from 1 to infinity by weak external magnetic fields. The concept of multi-functional materials with stacked magnetic-superconducting layers will open a new pathway to develop novel spintronic devices with magnetically controllable superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا