ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the interaction force between a high temperature superconductor and a permanent magnet

120   0   0.0 ( 0 )
 نشر من قبل Sergio O. Valenzuela
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.



قيم البحث

اقرأ أيضاً

Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened re search into high-temperature superconductors (HTSs) materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.
Theories based on the coupling between spin fluctuations and fermionic quasiparticles are among the leading contenders to explain the origin of high-temperature superconductivity, but estimates of the strength of this interaction differ widely. Here we analyze the charge- and spin-excitation spectra determined by angle-resolved photoemission and inelastic neutron scattering, respectively, on the same crystals of the high-temperature superconductor YBa2Cu3O6.6. We show that a self-consistent description of both spectra can be obtained by adjusting a single parameter, the spin-fermion coupling constant. In particular, we find a quantitative link between two spectral features that have been established as universal for the cuprates, namely high-energy spin excitations and kinks in the fermionic band dispersions along the nodal direction. The superconducting transition temperature computed with this coupling constant exceeds 150 K, demonstrating that spin fluctuations have sufficient strength to mediate high-temperature superconductivity.
186 - Warren E. Pickett 2006
The vision of ``room temperature superconductivity has appeared intermittently but prominently in the literature since 1964, when W. A. Little and V. L. Ginzburg began working on the `problem of high temperature superconductivity around the same time . Since that time the prospects for room temperature superconductivity have varied from gloom (around 1980) to glee (the years immediately after the discovery of HTS), to wait-and-see (the current feeling). Recent discoveries have clarified old issues, making it possible to construct the blueprint for a viable room temperature superconductor.
We derive augmented quasiclassical equations of superconductivity with the Lorentz force in the Matsubara formalism so that the charge redistribution due to supercurrent can be calculated quantitatively. Using it, we obtain an analytic expression for the vortex-core charge of an isolated vortex in extreme type-II materials given in terms of the London penetration depth and the equilibrium Hall coefficient. It depends strongly on the Fermi surface curvature and gap anisotropy, and may change sign even as a function of temperature due to the variation in the excitation curvature under the growing energy gap. This is also confirmed in our numerical study of high-$T_{rm c}$ superconductors.
One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strengt h and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا