ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of propagating edge spin waves modes

127   0   0.0 ( 0 )
 نشر من قبل Antonio Lara
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broadband magnetization response of equilateral triangular 1000 nm Permalloy dots has been studied under an in-plane magnetic field, applied parallel (buckle state) and perpendicular (Y state) to the triangles base. Micromagnetic simulations identify edge spin waves (E-SWs) in the buckle state as SWs propagating along the two adjacent edges. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and are weakly affected by dipolar interdot interaction and variation of the aspect ratio. Spin waves in the Y state have a two dimensional character. These findings open perspectives for implementation of the E-SWs in magnonic crystals and thin films.



قيم البحث

اقرأ أيضاً

We study spin-wave transport in a microstructured Ni81Fe19 waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n=1,3,... into a mixe d set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripes width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes
Spin waves have been studied experimentally and by simulations in 1000 nm side equilateral triangular Permalloy dots in the Buckle state (B, with in-plane field along the triangle base) and the Y state (Y, with in-plane field perpendicular to the bas e). The excess of exchange energy at the triangles edges creates channels that allow effective spin wave propagation along the edges inthe B state. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and(as pointed out by simulations) areweakly affected by smallvariations of the aspect ratio(from equilateral to isosceles dots) or by interdot dipolar interaction present in our dot arrays. Spin waves excited in the Y state have mainly a two-dimensional character.Propagation of the spin waves along the edge states in triangular dots opens possibilities for creation of new and versatile spintronic devices.
Topological boundary and interface modes are generated in an acoustic waveguide by simple quasi-periodic patternings of the walls. The procedure opens many topological gaps in the resonant spectrum and qualitative as well as quantitative assessments of their topological character are supplied. In particular, computations of the bulk invariant for the continuum wave equation are performed. The experimental measurements reproduce the theoretical predictions with high fidelity. In particular, acoustic modes with high Q-factors localized in the middle of a breathable waveguide are engineered by a simple patterning of the walls.
Ferro- and ferrimagnets play host to small-signal, microwave-frequency magnetic excitations called spin waves, the quanta of which are known as magnons. Over the last decade, the field of spin-wave dynamics has contributed much to our understanding o f fundamental magnetism. To date, experiments have focussed overwhelmingly on the study of room-temperature systems within classical limits. Here we demonstrate, for the first time, the excitation and detection of propagating spin waves at the single magnon level. Our results allow us to project that coupling of propagating spin-wave excitations to quantum circuits is achievable, enabling fundamental quantum-level studies of magnon systems and potentially opening doors to novel hybrid quantum measurement and information processing devices.
115 - Stefano Bonetti 2012
Integrated power and linewidth of a propagating and a self-localized spin wave modes excited by spin-polarized current in an obliquely magnetized magnetic nanocontact are studied experimentally as functions of the angle $theta_e$ between the external bias magnetic field and the nanocontact plane. It is found that the power of the propagating mode monotonically increases with $theta_e$, while the power of the self-localized mode has a broad maximum near $theta_e = 40$ deg, and exponentially vanishes near the critical angle $theta_e = 58$ deg, at which the localized mode disappears. The linewidth of the propagating mode in the interval of angles $58<theta_e<90$ deg, where only this mode is excited, is adequtely described by the existing theory, while in the angular interval where both modes can exist the observed linewidth of both modes is substantially broadened due to the telegraph switching between the modes. Numetical simulations and an approximate analytical model give good semi-quantitative description of the observed results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا